cô-s 3 số luôn a+b+c >= 3 nhân căn bậc ba (abc)
sử dụng bđt :(x+y)(y+z)(z+x) >= 8xyz (x,y,z>0)
rồi c/m (b+c-a)(a+c-b)(a+b-c) >= abc (đặt b+c-a=x,a+c-b=y,a+b-c=z) là xong
cô-s 3 số luôn a+b+c >= 3 nhân căn bậc ba (abc)
sử dụng bđt :(x+y)(y+z)(z+x) >= 8xyz (x,y,z>0)
rồi c/m (b+c-a)(a+c-b)(a+b-c) >= abc (đặt b+c-a=x,a+c-b=y,a+b-c=z) là xong
Cho a,b,c là 3 cạnh của một tam giác .Chứng minh:
\(A=\frac{a}{b+c-a}+\frac{b}{a+c-b}+\frac{c}{a+b-c}\ge3\)
Cho a, b, c là số đo 3 cạnh của một tam giác. Chứng minh rằng: \(\frac{a}{b+c-a}+\frac{b}{a+c-b}+\frac{c}{a+b-c}\ge3\)
Cho a, b, c là 3 cạnh của một tam giác. chứng minh rằng;
\(A=\frac{a}{b+c-a}+\frac{b}{a+c-b}+\frac{c}{a+b-c}\ge3\)
Cho a,b,c là 3 cạnh của tam giác. Chứng minh rằng:
\(A=\frac{a}{b+c-a}+\frac{b}{a+c-b}+\frac{c}{a+b-c}\)lớn hơn hoặc bằng 3
Cho a,b,c là 3 cạnh của tam giác Chứng minh \(\frac{ab}{a+b-c}+\frac{bc}{-a+b+c}+\frac{ca}{a-b+c}>=a+b+c\)
Cho a,b,c là độ dài 3 cạnh của 1 tam giác. Chứng minh rằng: \(2\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right)\ge\frac{a}{c}+\frac{b}{a}+\frac{c}{b}+3\)
Cho a,b,c là các đọ dài thỏa mãn điều kiện:
\(\frac{a^2+b^2-c^2}{2ab}+\frac{b^2+c^2-a^2}{2bc}+\frac{c^2+a^2-b^2}{2ca}>1\)
Chứng minh rằng:a,b,c là các cạnh của một tam giác
cho a;b;c là độ dài 3 cạnh một tam giác chứng minh rằng:
\(A=\frac{a}{b+c-a}+\frac{b}{a+c-b}+\frac{c}{a+b-c}\ge3\)
cho a,b,c là độ dài 3 cạnh của một tam giác, biết\(\left(1+\frac{b}{a}\right)\left(1+\frac{c}{b}\right)\left(1+\frac{a}{c}\right)=8\). Chứng minh tam giác đó đều.