Lời giải:
ĐKĐB \(\Leftrightarrow a+\frac{1}{b}=b+\frac{1}{c}=c+\frac{1}{a}\)
\(\Rightarrow \left\{\begin{matrix} a-b=\frac{b-c}{bc}\\ b-c=\frac{c-a}{ac}\\ c-a=\frac{a-b}{ab}\end{matrix}\right.\)
\(\Rightarrow (a-b)(b-c)(c-a)=\frac{(b-c)(c-a)(a-b)}{a^2b^2c^2}\)
Vì $a,b,c$ đôi 1 khác nhau nên $a^2b^2c^2=1$. Khi đó:
\(P=(5.1^3-8.1+2)^{2020}=(-1)^{2020}=1\)