Cho đường tròn (O; R) và điểm A cố định ngoài đường tròn. Qua A kẻ hai tiếp tuyến AM, AN tói đường tròn (M, N là hai tiếp điểm). Một đường thẳng d đi qua A cắt đường tròn (O; R) tại B và C (AB < AC). Gọi I là trung điểm BC
a, Chứng minh năm điểm A, M, N, O, I thuộc một đường tròn
b, Chứng minh A M 2 = A B . A C
c, Đường thẳng qua B, song song với AM cắt MN tại E. Chúng minh IE song song MC
d, Chứng minh khi d thay đổi quanh quanh điểm A thì trọng tâm G của tam giác MBC luôn nằm trên một đường tròn cố định
Bài 5. Cho đường tròn (O;R) và điểm A cố định ngoài đường tròn. Qua A kẻ hai tiếp
tuyến AM, AN tới đường tròn (M, N là hai tiếp điểm). Một đường thẳng d đi qua A
cắt đường tròn (O;R) tại B và C (AB < AC). Gọi I là trung điểm của BC
a) Chứng minh năm điểm A,M, N, O,I cùng thuộc một đường tròn
b) Chứng minh AM2 = AB.AC
c) Đường thẳng qua B, song song với AM cắt MN tại E. Chứng minh: IE // MC
d) Chứng minh: Khi d thay đổi quay quanh điểm A thì trọng tâm G của tam giác
MBC luôn nằm trên một đường tròn cố định.
Bài 5. Cho đường tròn (O;R) và điểm A cố định ngoài đường tròn. Qua A kẻ hai tiếp
tuyến AM, AN tới đường tròn (M, N là hai tiếp điểm). Một đường thẳng d đi qua A
cắt đường tròn (O;R) tại B và C (AB < AC). Gọi I là trung điểm của BC
a) Chứng minh năm điểm A,M, N, O,I cùng thuộc một đường tròn
b) Chứng minh AM^2 = AB.AC
c) Đường thẳng qua B, song song với AM cắt MN tại E. Chứng minh: IE // MC
d) Chứng minh: Khi d thay đổi quay quanh điểm A thì trọng tâm G của tam giác
MBC luôn nằm trên một đường tròn cố định.
Cho 3 điểm A, B, C cố định nằm trên đường thẳng d (B nằm giữa A và C). Gọi (O) là đường tròn thay đổi luôn đi qua 2 điểm B, C và có tâm O (O không nằm trên đường thẳng d). Kẻ 2 tiếp tuyến AM, AN của đường tròn (O), với M, N là 2 tiếp điểm. AO cắt MN tại H; đường thẳng AO cắt đường tròn (O) tại P và Q (P nằm giữa A và O). Gọi D là trung điểm HQ. Qua H kẻ đường thẳng vuông góc với MD cắt đường thẳng MP tại E. Chứng minh:
a) P là trung điểm ME.
b) Đường thẳng MN luôn đi qua một điểm cố định khi đường tròn (O) thay đổi.
Cho 3 điểm A,B,C cố định, thẳng hàng theo thứ tự đó. Một đường tròn (O) thay đổi nhưng luôn đi qua 2 điểm cố định C và B (O không thuộc BC). Từ A vẽ hai tiếp tuyến AM và AN với đường tròn (O) (M,N là 2 tiếp điểm ). Gọi I là trung điểm của BC.
1, Chứng minh 4 điểm O,I,A,M cùng thuộc 1 đường tròn
2, Gọi E,H lần lượt là giao điểm của OA cới đường tròn (O) và MN. Chứng minh BE là phân giác của góc ABH
3,Chứng minh rằng tâm đường tròn ngoại tiếp tan giác OHI luôn nằm trên một đường thẳng cố định
Cho 3 điểm A,B,C cố định, thẳng hàng theo thứ tự đó. Vẽ đường tròn (O) đi qua B,C. Từ A kẻ tiếp tuyến AM,AN với (O) (M,N là các tiếp điểm). Gọi I là trung điểm BC. Đường thẳng AO cắt MN tại H. Đường thẳng NI cắt đường tròn tại điểm thứ 2 D.
1. CMR AMIN là tứ giác nội tiếp
2. CMR MD//BC
3 CM khi (O) thay đổi nhưng luôn đi qua B,C (với O không thuộc BC) thì N thuộc một đường tròn cố định và tâm đường tròn ngoại tiếp tam giác HIO chạy trên 1 đường thẳng cố định
Cho ba điểm A, B, C cố định nằm trên một đường thẳng và theo thứ tự đó. Đường tròn (O) thay đổi luôn đi qua B và C. Từ A kẻ các tiếp tuyến AM và AN với đường tròn (O) (M, N là hai tiếp điểm). Đường thẳng MN cắt AO tại H, gọi E là trung điểm của BC. Chứng minh rằng khi đường tròn (O) thay đổi, tâm của đường tròn ngoại tiếp tam giác OHE nằm trên một đường tròn cố định
Cho đường tròn ( O; R ) và điểm A cố định ngoài đường tròn. Qua A kẻ 2 tiếp tuyến AM, AN với đường tròn (M và N là các tiếp điểm). Một đường thẳng d đi qua A cắt (O;R) tại B và C (AB<AC). Gọi I là trung điểm BC
a, Chứng minh A, M, N, O, I cùng thuộc 1 đường tròn
b, Chứng minh AK.AI = AB.AC
Cho 3 điểm A, B, C cố định theo thứ tự trên đường thẳng d.Đường tròn (O,R) thay đổi nhưng luôn đi qua A,B. Từ C vẽ 2 tiếp tuyến CP, CQ với (O,R) (P,Q là 2 tiếp điểm). Gọi I là trung điểm của đoạn AB, M là giao điểm của OC và PQ. Chứng minh khi đường tròn (O,R) thay đổi nhưng vẫn đi qua A,B thì tâm đường tròn ngoại tiếp tam giác IOM luôn thuộc một đường thẳng cố định.