a: Xét ΔABD và ΔAED có
AB=AE
góc BAD=góc EAD
AD chung
Do đo: ΔABD=ΔAED
=>DB=DE
Xét ΔDBF và ΔDEC có
góc DBF=góc DEC
DB=DE
góc BDF=góc EDC
Do đó: ΔDBF=ΔDEC
=>BF=EC
a: Xét ΔABD và ΔAED có
AB=AE
góc BAD=góc EAD
AD chung
Do đo: ΔABD=ΔAED
=>DB=DE
Xét ΔDBF và ΔDEC có
góc DBF=góc DEC
DB=DE
góc BDF=góc EDC
Do đó: ΔDBF=ΔDEC
=>BF=EC
Cho ABC có AB < AC. Kẻ tia phân giác AD của góc BAC (D thuộc BC). Trên cạnh AC lấy E sao cho AE = AB, trên tia AB lấy điểm F sao cho AF = AC. Chứng minh rằng:
a. ∆BDF = ∆EDC
b.BF = EC
c. F, D, E thẳng hàng
d. AD ⊥ FC
Cho tam giác ABC có AB < AC. Kẻ tia phân giác AD của B A C ^ (D thuộc BC). Trên cạnh AC lấy điểrn E sao cho AE = AB, trên tia AB lấy điểm F sao cho AF = AC, Chứng minh:
a) ∆ B D F = ∆ E D C
b) BF = EC
c) A D ⊥ F C .
Cho tam giác ABC có AB < AC. Kẻ tia phân giác AD của góc BAC ( D thuộc BC ). Trên cạnh AC lấy điểm E sao cho AE = AB, trên tia AB lấy điểm F sao cho AF = AC. Chứng minh rằng:
a) Tam giác BDF = Tam giác EDC
b) BF = EC
c) F, D, E thẳng hàng
d) AD vuông góc với FC
CÁC BẠN GIÚP MÌNH NHÉ! CẢM ƠN RẤT NHIỀU!
4. Cho ΔABC có AB < AC. Kẻ tia phân giác AD của BAC ( D thuộc BC). Trên cạnh AC lấy điểm E sao cho AE = AB, trên tia AB lấy điểm F sao cho AF = AC. Chứng minh rằng:
a. ΔBDF = ΔEDC.
b. BF = EC.
c. F, D, E thẳng hàng.
d. AD ⊥ FC
BÀI 2: Cho DABC có AB < AC. Kẻ tia phân giác AD của BAC ( D thuộc BC). Trên cạnh AC lấy điểm E sao cho AE = AB, trên tia AB lấy điểm F sao cho AF = AC. Chứng minh rằng:
a. DBDF = DEDC.
b. BF = EC.
c. F, D, E thẳng hàng.
d. AD ^ FC
1.Cho tam giác ABC có AB=AC . Kẻ tia phân giác AD của góc BAC (D thuộc BC).Trên cạnh AC lấy điểm E sao cho AE=AB, trên tia AB lấy điểm F sao cho AF=AC.Chứng minh rằng:
a)Tam giác ABE=Tam giác ACE
b)AE là đường trung trực của đoạn thẳng BC
2.Cho tam giác ABC có AB<AC .Kẻ tia phân giác AD của góc BAC (D thuộc BC). Trên cạnh AC lấy điểm E sao cho AE=AB, trên tia AB lấy điểm F sao cho AF=AC. Chứng minh rằng :
a)Tam giác ADF=Tam giác ACD
b)Tam giác BDF=Tam giác EDC
c)BF=AC
d)AD vuông góc FC
Cho △ABC có AB < AC. Kẻ tia phân giác AD của \(\widehat{BAC}\) (D ∈ BC). Trên cạnh AC lấy điểm E sao cho AE = AB, trên tia AB lấy điểm F sao cho AF = AC. Chứng minh:
a) △BDF = △EDC
b) BF = EC
c) AD ⊥ FC
!!CÓ VẼ HÌNH!!
Cho tam giác ABC có AB < AC. Kẻ tia phân giác AD của BAC ( D thuộc BC). Trên cạnh AC lấy điểm E sao cho AE = AB, trên tia AB lấy điểm F sao cho AF = AC. Chứng minh rằng:
a.Tam giác BDF = EDC
b. BF = EC
c.F,D,E thẳng hàng
d. AD vuông góc FC
cho tam giác ABC có AB < AC. kẻ tia phân giác AD của góc BAC ( D thuộc BC). trên cạnh AC lấy điểm E sao cho AE =AB, trên tia AB lấy điểm F sao cho AF = AC. chứng minh rằng:
a) tam giác BDF = tam giác EDC
b) BF = EC
c) F, D, E thẳng hàng
d) AD vuông góc với FC