Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Gia Linh

Cho ∆ abc có A (2;1), B(-2;5), c(-5;2) a) tính tọa độ vectơ AB-> ; AC-> ; BC-> b) tính chu vi ∆ ABC CMR ∆ABC vuông tại B c) tìm tọa độ trung điểm I của AB d)_________trọng tâm ∆ ABC e)_________ D sao cho ABCD là hình bình hành

Nguyễn Lê Phước Thịnh
23 tháng 11 2023 lúc 12:19

a: A(2;1); B(-2;5); C(-5;2)

Tọa độ vecto AB là:

\(\left\{{}\begin{matrix}x=-2-2=-4\\y=5-1=4\end{matrix}\right.\)

Vậy: \(\overrightarrow{AB}=\left(-4;4\right)\)

Tọa độ vecto AC là:

\(\left\{{}\begin{matrix}x=-5-2=-7\\y=2-1=1\end{matrix}\right.\)

Vậy: \(\overrightarrow{AC}=\left(-7;1\right)\)

Tọa độ vecto BC là:

\(\left\{{}\begin{matrix}x=-5-\left(-2\right)=-5+2=-3\\y=2-5=-3\end{matrix}\right.\)

Vậy: \(\overrightarrow{BC}=\left(-3;-3\right)\)

b: \(\overrightarrow{AB}=\left(-4;4\right);\overrightarrow{AC}=\left(-7;1\right);\overrightarrow{BC}=\left(-3;-3\right)\)

\(AB=\sqrt{\left(-4\right)^2+4^2}=4\sqrt{2}\)

\(AC=\sqrt{\left(-7\right)^2+1^2}=5\sqrt{2}\)

\(BC=\sqrt{\left(-3\right)^2+\left(-3\right)^2}=3\sqrt{2}\)

Chu vi ΔABC là:

\(5\sqrt{2}+4\sqrt{2}+3\sqrt{2}=12\sqrt{2}\)

Vì \(AC^2=BA^2+BC^2\)

nên ΔABC vuông tại B

c: tọa độ I là:

\(\left\{{}\begin{matrix}x=\dfrac{2+\left(-2\right)}{2}=0\\y=\dfrac{1+5}{2}=\dfrac{6}{2}=3\end{matrix}\right.\)

Vậy: I(0;3)

d: Tọa độ trọng tâm G của ΔABC là:

\(\left\{{}\begin{matrix}x=\dfrac{2+\left(-2\right)+\left(-5\right)}{3}=-\dfrac{5}{3}\\y=\dfrac{1+5+2}{3}=\dfrac{8}{3}\end{matrix}\right.\)

e: ABCD là hình bình hành

=>\(\overrightarrow{AB}=\overrightarrow{DC}\)

mà \(\overrightarrow{AB}=\left(-4;4\right);\overrightarrow{DC}=\left(-5-x;2-y\right)\)

nên \(\left\{{}\begin{matrix}-5-x=-4\\2-y=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+5=4\\y=2-4=-2\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=-1\\y=-2\end{matrix}\right.\)

Vậy: D(-1;-2)


Các câu hỏi tương tự
Hồng Ngân
Xem chi tiết
búp bê chibi
Xem chi tiết
Traan MinhAnh
Xem chi tiết
Tiên tiên
Xem chi tiết
linh thuy
Xem chi tiết
22.Trương Ng. Ngân Phụng
Xem chi tiết
Ngọc Anh
Xem chi tiết
Mia Minazukii
Xem chi tiết
linhlinh07
Xem chi tiết