a: Xét ΔABH vuông tại H và ΔACH vuông tại H có
AB=AC
AH chung
Do đó:ΔABH=ΔACH
b: Xét tứ giác ABCK có
I là trung điểm của AC
I là trung điểm của BK
DO đó: ABCK là hình bình hành
Suy ra: CK=AB
mà AB=AC
nên CK=AC
a: Xét ΔABH vuông tại H và ΔACH vuông tại H có
AB=AC
AH chung
Do đó:ΔABH=ΔACH
b: Xét tứ giác ABCK có
I là trung điểm của AC
I là trung điểm của BK
DO đó: ABCK là hình bình hành
Suy ra: CK=AB
mà AB=AC
nên CK=AC
Cho tam giác ABC cân tại A kể AH vuông gốc BC ( H thuộc BC) Gọi I là trung điểm AC trên tia đối IB lấy K sao cho IB=IK cmr CK=AC AH cắt BI tại G kẻ CG cắt AB tại M.cmr MH//AC
có bạn nào giúp với
cho tam giác abc vuông tại a có ab = 9 cm, bc = 15 cm. gọi m là trung điểm của bc, kẻ mh vuông góc ac (mh thuộc ac). trên tia đối tia mh lấy điểm k sao cho mk = mh.
a. tính độ dài ac
b.chứng minh tam giác mhc = tam giác mkb.
c. chứng minh ah = bk.
d. gọi g là giao điểm của am và bh, tia cg cắt ab tại i.
chứng minh ia = ib.
Cho tam giác ABC vuông tại A có AB=9 cm. Gọi M là trung điểm của BC, kẻ MH vuông góc với AC. Trên tia đối tia MH lấy điểm K sao cho MK=MH 1. Tính độ dài AC ?
2. Chứng minh tam giác MHC=tam giác MKB.
3. Chứng minh AH=BK.
4. Goi G là giao điểm của AM và BH, tia CG cắt AB tại I(i). Chứng minh IA=IB
cho tam giác abc cân tại A ,kẻ AH vuông góc với bc tại h có BC=18 cm,AH=12cm. a) tính độ dài AB, Chu vi của tam giác ABC. b) trên tia đối của tia BC lấy điểm M, trên tia đối của tia CB lấy điểm N sao choBM =CN. Chứng minh tam giác AMN câm. c) TừB kẻ BI Vuông góc với AM tại I , kẻ CK vuông góc với AN tại K . Chứng minh IK// BC. d) IB cắt CK kéo dài tạiO . Chứng minh A,O,H thẳng hàng
Bài 9: (3,5 điểm) Cho tam giác ABC vuông tại A, lấy điểm m là trung điểm của BC. Vẽ MH AC (H thuộc AC). Trên tia HM lấy điểm K sao cho MK = MH.
a) Chứng minh ΔMHC = ΔMKB rồi suy ra HKB= 90
Chứng minh HK // AB và KB = AH.
Chứng minh ΔMAC cân.
Gọi G là giao điểm của AM và BH. Chứng minh GB + GC > 3GA.
Bài 8: (3,5 điểm) Cho tam giác ABC cân tại A, kẻ AH vuông góc với BC tại H.
Chứng minh rằng ΔAHB = ΔAHC.
Gọi I là trung điểm của cạnh AH. Trên tia đối của tia IB, lấy điểm D sao cho IB = ID. Chứng minh IB = IC, từ đó suy ra AH + BD > AB + AC.
Trên cạnh CI, lấy điểm E sao cho CE 23 CI. Chứng minh ba điểm D, E, H thẳng hàn
Bài 5: Cho ΔABC cân tại A, A= 90. vẽ AH vuông góc với BC tại H.
a) Chứng minh: ΔABH = ΔACH
b) Cho biết AH = 4cm; BH = 3cm. Tính độ dài cạnh AB.
c) Qua H, vẽ đường thẳng song song với AC cắt cạnh AB tại M. Gọi G là giao điểm của CM và AH. Chứng minh G là trọng tâm của ΔABC và tính độ dài cạnh AG.
(Vẽ hình giúp mk với nha mk cần gấp ạ)
Cho tam giác ABC cân tại A, kẻ AH vuông góc BC (H thuộc BC)
A) Chứng minh Tam giác ABH = Tam giác ACH
B) Gọi M là trung điểm AC. Trên tia đối tia MH lấy D sao cho MH = MD. Chứng minh: AD = HC
C) Chứng minh: AB // DH
Cho tam giác ABC cân tại A kẻ AH vuông góc với BC ( H thuộc BC )
a) chứng minh tam giác ABH = tam giác ACH
b) Gọi N là trung điểm của AC hai đoạn thẳng BN và AH cắt nhau tại G trên tia đối của tia NB lấy K sao cho NK = NG
chứng minh G là trọng tâm của tam giác ABC và AG // CK
c) chứng minh G là trung điểm BK
4)Cho tam giác ABC cân tại A. Vẽ AH ⊥ BC
a)Chứng minh: ∆AHB = ∆AHC ;
b)Vẽ HM ⊥ AB, HN ⊥ AC. Chứng minh ∆AMN cân
c)Chứng minh MN // BC ;
d)Chứng minh AH2 + BM2 = AN2 + BH2
5)Cho tam giác ABC vuông tại A, có AB < AC. Trên cạnh BC lấy điểm D sao cho BD = BA. Kẻ AH vuông góc với BC, kẻ DK vuông góc với AC
.a)Chứng minh : ADBDABˆˆ=;
b)Chứng minh : AD là phân giác của góc HAC
c) Chứng minh : AK = AH.
6)Cho tam giác cân ABC có AB = AC = 5 cm , BC = 8 cm . Kẻ AH vuông góc với BC (H ∈ BC)
a) Chứng minh : HB = HC và ·CAH = ·BAH
b)Tính độ dài AH ?
c)Kẻ HD vuông góc AB ( D ∈AB), kẻ HE vuông góc với AC(E ∈AC). Chứng minh : DE//BC
7)Cho tam giác ABC , có AC < AB , M là trung điểm BC, vẽ phân giác AD. Từ M vẽ đường thẳng vuông góc với AD tại H, đường thẳng này cắt tia AC tại F ,cắt AB tại E.
Chứng minh rằng :a) ∆ AFE cân
b) Vẽ đường thẳng Bx // EF, cắt AC tại K. Chứng minh rằng : KF = BE
c) Chứng minh rằng : AE = (AB+AC):2
8) Cho tam giác DEF vuông tại D, phân giác EB . Kẻ BI vuông góc với EF tại I . Gọi H là giao điểm của ED và IB .
Chứng minh : a) ΔEDB = Δ EIB ;
b) HB = BF
c) Gọi K là trung điểm của HF. Chứng minh 3 điểm E, B, K thẳng hàng ;
d) DI // HF
9) Cho tam giác ABC vuông tại A . Đường phân giác của góc B cắt AC tại H . Kẻ HE vuông góc với BC. Đường thẳng EH và BA cắt nhau tại I .
a)Chứng minh rẳng : ΔABH = ΔEBH ;
b)Chứng minh BH là trung trực của AE
c)Chứng minh BH vuông góc với IC . Có nhận xét gì về tam giác IBC
10) Cho ΔABC vuông tại A, M là trung điểm BC, vẽ MH ⊥AB. Trên tia đối tia MH lấy điểm K sao cho MK = MH.
a).CMR: ΔMHB = ΔMKC
b).CMR: AC = HK
c).CH cắt AM tại G, tia BG cắt AC tại I. CMR: I là trung điểm AC
11) Cho ∆ ABC cân tại A. Trên BC lấy D và E sao cho BD = CE ( D và E nằm ngoài tam giác ). Kẻ tia DI ⊥ AB,kẻ tia EK ⊥AC, DI cắt EK tại H.
a) CMR: ∆ ABE = ∆ ACD.
b) CMR: HD = HE.
c)Gọi O là giao điểm của CI và BK ;∆ OED là tam giác gì ? chứng minh.
d) CMR: AO là tia phân giác của góc BAC ?
e) A ,O , H thẳng hàng
12) Cho tam giác ABC cân ở A có AB = AC = 5 cm; kẻ AH ⊥ BC ( H ∈ BC)
a) Chứng minh BH = HC và BAH = CAH
b) Tính độ dài BH biết AH = 4 cm
c) Kẻ HD ⊥ AB ( d ∈ AB), kẻ EH ⊥ AC (E ∈ AC).
d) Tam giác ADE là tam giác gì? Vì sao?
cho tam giác nhọn ABC cân tại A có AB=13cm, BC=10cm. kẻ AH vuông góc với BC tại H
a) chứng minh tam giác ABH = tam giác ACH
b) gọi M là trung điểm của AC, G là giao điểm của BM và AH. tính AG
c) kẻ HE vuông góc với AB,HF vuông góc với AC (E thuộc AB, F thuộc AC. tia EH cắt AC tại I và tia FH cắt AB tại K. chứng minh AH là đường trung trực của đoạn thẳng IK.
d) từ H kẻ HD song song với AC (D thuộc AB). chứng minh ba điểm C, G, D thẳng hàng
Cho △ABC vuông tại A. Biết AB = 20cm, BC = 25cm
a, Tính AC
b, Trên tia đối của tia AB lấy K sao cho BA = BK. Chứng minh △BCK cân.
c, Kẻ đường thẳng d vuông góc với AC tại C. Gọi I là trung điểm CK. Tia BI cắt d tại M. Chứng minh: BI = IM