a/ xét tam giác ABC cân tại A ta có
AH là đường phân giác(gt)
=> AH là đường trung tuyến; AH là đường cao
=>H là trung điểm của BC và AH vuông góc với BC
\(\)
b/ ta có: H là trung điểm của BC
\(\Rightarrow BH=\frac{1}{2}BC\)
\(\Rightarrow BH=6cm\)
xét tam giác ABH vuông tại H ta có
\(AB^2=BH^2+AH^2\)
\(\Rightarrow AH^2=AB^2-BH^2\)
\(\Rightarrow AH^2=64\)
\(\Rightarrow AH=8cm\)
ta có
\(S_{ABC}=\frac{AH.BC}{2}\)
\(S_{ABC}=48cm^2\)
c/ xét tam giác MBH vuông tại M và tam giác NCH vuông tại N ta có
BH=HC(H là trung điểm của BC)
góc MBH=góc NCH (tam giác ABC vuông tại A)
=> tam giác MBH=tam giác NCH (ch-gn)
=> MH=NH (2 cạnh tuong ứng)
cmtt tam giác BGH=tam giác CNH (ch-gn)
=> QH=NH(2 cạnh tương ứng)
mà MH=NH(cmt)
nên QH=MH
=> tam giác GHM cân tại H
\(\)