Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Làm gì mà căng

Cho a,b,c > 0 thoả mãn :

ab+bc+ca=2abc

Tìm giá trị nhỏ nhất của biểu thức :

\(P=\frac{1}{a\left(2a-1\right)^2}+\frac{1}{b\left(2b-1\right)^2}+\frac{1}{c\left(2c-1\right)^2}\)

Kudo Shinichi
13 tháng 10 2019 lúc 21:50

Ta có : \(ab+bc+ca=2abc\)

\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=2\)

Đặt \(\hept{\begin{cases}x=\frac{1}{a}\\y=\frac{1}{b}\\z=\frac{1}{c}\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}x+y+z=2\\P=\frac{x^3}{\left(2-x\right)^2}+\frac{y^3}{\left(2-y\right)^3}+\frac{z^3}{\left(2-z^2\right)}\end{cases}}\)

Áp dụng bất đẳng thức Cauchy - Schwarz 

\(\Rightarrow\frac{x^3}{\left(2-x\right)^2}+\frac{2-x}{8}+\frac{2-x}{8}\ge3\sqrt[3]{\frac{x^3}{64}}=\frac{3x}{4}\)

Tương tự ta có : \(\hept{\begin{cases}\frac{y^3}{\left(2-y\right)^2}+\frac{2-y}{8}+\frac{2-y}{8}\ge\frac{3y}{4}\\\frac{z^3}{\left(2-z\right)^2}+\frac{2-z}{8}+\frac{2-z}{8}\ge\frac{3z}{8}\end{cases}}\)

\(\Rightarrow P+\frac{12-2\left(x+y+z\right)}{8}\ge\frac{3}{4}\left(x+y+z\right)\)

\(\Rightarrow P\ge\frac{1}{2}\)

Dấu "=" xảy ra khi \(x=y=z=\frac{2}{3}\)


Các câu hỏi tương tự
Nguyễn Thị Mát
Xem chi tiết
Nguyễn Thị Kim Tuyến
Xem chi tiết
phan tuấn anh
Xem chi tiết
Kiệt Nguyễn
Xem chi tiết
Kiệt Nguyễn
Xem chi tiết
Bùi Trần Nhật Thanh
Xem chi tiết
Nguyễn Mai
Xem chi tiết
Bao Nguyen Trong
Xem chi tiết
lý canh hy
Xem chi tiết