Cho a,b,c >0 thỏa mãn a+b+c = \(a^2+b^2+c^2\)= \(a^3+b^3+c^3\).Tính \(a^5+b^5+c^5\)
Cho a,b,c > 0 thỏa mãn a + b + c = a^2+b^2 +c^2 = a^3+b^3 +c^3 .Tính a^5+b^5 +c^5
Cho các số thực a,b,c thỏa mãn a+b+c=0. \(CMR:\frac{a^5+b^5+c^5}{5}=\frac{a^2+b^2+c^2}{2}.\frac{a^3+b^3+c^3}{3}\)
a, Cho 3 số thực a, b, c thỏa mãn a+b+c=0. CMR a5+b5+c5=5/2abc(a2+b2+c2)
b, Tìm số thực x thỏa mãn (3x-2)5+(5-x)5+(-2x-3)5=0
1) Cho 2 số x, y thỏa mãn x-2y=5; x^2+4y^2=29 Tính giá trị của A=x^3-8y^3
2) Cho các số thực a, b, c thỏa mãn a+b+c=0 Chứng minh rằng a^4+b^4+c^4=1/2(a^2+b^2+c^2)^2
Cho a,b,c là 3 số đôi 1 không đối nhau thỏa mãn ab+bc+ac=5. Tính P= (a+b)^2(b+c)^2(c+a)^2/(5+a^2)(5+b^2)(5+c^2)
1. Rút gọn: M = [(x^5)-(2x^4)+(2x^3)-(4x^2)+3x+6]/[(x^2)+2x-8]
2. Cho a, b, c thỏa mãn: (1/a)+(1/b)+(1/c)=1/(a+b+c)
Chứng minh rằng: M = [(a^19)+(b^19)].[(b^5)+(c^5)].[(c^2001)+(a^2001)]=0
3. Cho a, b, c, x, y, z thỏa mãn: a+b+c=1; (a^2)+(b^2)+(c^2)=1 và 1/a=1/b=1/c
Chứng minh rằng: xy+yz+xz=0
Cho các số thực a, b, c thỏa mãn a + b + c = 0. Chứng minh rằng: (a5 + b5 + c5)/5 = (a2 + b2 + c2)/2 . (a3 + b3 + c3)/3
1) Xét a,b thuộc R (a,b>0) thỏa mãn a2+b2=2. Tìm Min P= a2/(b+1) + b2/(a+1).
2)Xét a,b thuộc R.Tìm Min P=(a+b)4/(a2+b2) +8/ab.
3) Xét a,b thuộc R là độ dài 3 cạnh tam giác thỏa mãn 3/(c+b-a)+4/(a+c-b)+5/(a+b-c)=12. Tìm Max 1/(a+c)+2/(a+b).
4) Cho x,y,z thuộc R,>0 thỏa mãn x2+y2+z2=3.Tính Min P = x3/(x+y2)+y3/(y+z2)+z3/(z+x2).
5) Cho a,b,c thuộc R,>0 thỏa mãn a+b+c=1.Tính Min P=a/(b+ac)+b/(c+ab)+c/(a+bc).
6) Cho a,b,c thuộc R thỏa mãn a+b+2c=6; a2+b2+2c2=10. Tìm Max D= ab+c2+7c.
Các bạn giúp mình với,mai nộp rồi mà còn nhiều bài khó quá T^T.