cho a,b,c>0 thỏa mãn a+b+c=1
cmr: \(\left(\dfrac{1}{a}-1\right)\left(\dfrac{1}{b}-1\right)\left(\dfrac{1}{c}-1\right)\ge8\)
Cho a,b,c>0 thỏa mãn ab+bc+ac<=1
CMR: \(\dfrac{a}{\sqrt{a^2+1}}+\dfrac{b}{\sqrt{b^2+1}}+\dfrac{c}{\sqrt{c^2+1}}\le\dfrac{3}{2}\)
Bài 1: Cho a,b,c >0 t/m: abc=1
CMR: \(\dfrac{1}{a^3+b^3+1}+\dfrac{1}{b^3+c^3+1}+\dfrac{1}{c^3+a^3+1}\le1\)
Bài 2: Cho a,b,c >0 t/m a+b+c=1
CMR: \(\dfrac{1+a}{1-a}+\dfrac{1+b}{1-b}+\dfrac{1+c}{1-c}\ge6\)
Bài 3: Cho a,b,c >0 t/m abc=1
CMR: \(\dfrac{ab}{a^4+b^4+ab}+\dfrac{bc}{b^4+c^4+bc}+\dfrac{ac}{c^4+a^4+ac}\le1\)
Cho a,b,c>=1 thỏa mãn 32abc=18(a+b+c)+27
Tìm GTLN \(\frac{\sqrt{a^2-1}}{a}\)+\(\frac{\sqrt{b^2-1}}{b}\)+\(\frac{\sqrt{c^2-1}}{c}\)
Cho ba số thực a,b,c khác 0 thoả mãn a(1/b+1/c)+ b(1/c+1/a)+ c(1/a+1/c)= -2. Chứng minh rằng (a+b)(b+c)(c+a)=0
cho a,b,c thoả mãn a,b,c>0 và a+b+c<=1. tìm GTNN của a^2 + b^2 + c^2 + 1/a^2 + 1/b^2 + 1/c^2
Cho a,b,c>0 thoả mãn 1/a+1/b +1/c =4. Chứng minh 1/(2a+b+c ) + 1/(a+2b+c ) +1/(a+b+2c) =< 1
Cho a, b, c > 0 thoả mãn 1/a +1/b 1/c = 4
CMR 1/2a+b+c + 1/a+2b+c +1/a+b+2c < 1
cho a,b,c>0 thoả mãn a+b+c=1
chứng minh rằng √(a+bc) +√(b+ca) +√(c+ab)≥1+√bc+√ca+√ab
cho a,b,c>0 thoả mãn a+b+c=1
chứng minh rằng √(a+bc) +√(b+ca) +√(c+ab)≥1+√bc+√ca+√ab