Cho a,b,c > 0. Chứng minh rằng:
a/[a+căn của (a+b)(a+c)] + b/[b + căn của (b+a)(b+c)] + c/[c + căn của (c+a)(c+b) < hoặc bằng 1
*ĐANG CẦN GẤP! giải nhanh dùm nha :) <3
Cho s b,c>0
Chứng minh rằng a/a+b+b/b+c+c/c+a< căn a/b+c+cănb/c+a+cănc/a+b
cho a,b,c > 0 . chứng minh rằng a2/b + b2/c + C2/a > căn(a2- ab + b2) + căn(b2- bc + c2) + căn(a2 - ca + c2)
Cho các số thực a, b, c > 0. Chứng minh rằng :
\(\frac{a^2}{\left(2a+b\right)\left(2a+c\right)}+\frac{b^2}{\left(2b+a\right)\left(2b+c\right)}+\frac{c^2}{\left(2c+a\right)\left(2c+b\right)}\ge\frac{1}{3}\)
cho a,b,c > 0 . chứng minh rằng a2/b + b2/c + C2/a > căn(a2- ab + b2) + căn(b2- bc + c2) + căn(a2 - ca + c2)
cho a b c > 0
chứng minh rằng
a/(b+4c+2a) + b/(c+4a+2b) + c/(a+4b+2c) <= 1/2
(3a-b)/(a^2+ab) + (3b-c)/(b^2+cb) + (3c-a)/(ac^2+ac) <= a/bc +b/ac + c/ab
Cho a,b > 0, C khác 0 sao cho 1/a + 1/b +1/c = 0 Chứng minh căn (a+b) = căn(a+c) + căn(b+c)
1) Cho a, b, c > 0. Chứng minh rằng:
\(\frac{bc}{2a+b+c}+\frac{ca}{2b+c+a}+\frac{ab}{2c+a+b}\le\frac{a+b+c}{4}\)
2) Cho a, b, c > 0, 2 + a + b + c = abc. Chứng minh rằng:
\(a^2\left(1+b\right)+b^2\left(1+c\right)+c^2\left(1+a\right)+36\ge12\left(a+b+c\right)\)
Thánh nào làm hộ e với ạ ♥ ♥ ♥
Bài 5: cho a,b,c lớn hơn 0
chứng minh rẳng:
\(2\left(\dfrac{a}{b+2c}+\dfrac{b}{c+2a}+\dfrac{c}{a+2b}\right)\ge1+\dfrac{b}{b+2a}+\dfrac{c}{c+2b}+\dfrac{a}{a+2c}\)