(a+b)2=a2+2ab+b2=22=4
=>2ab=4-a2-b2
=>2ab=4-20
=>2ab=-16
=>ab=-8
(a+b)(a2+b2)=(a+b)a2+(a+b)b2=a3+a2b+ab2+b3
=a3+b3+ab(a+b)=2.20
=>a3+b3+-16.2=40
=>a3+b3=40+32
=>a3+b3=72
Ta có:(a+b)^2=2^2
<=>a^2+2ab+b^2=4
<=>20+2ab=4
<=>ab=-8
Lại có:a^3+b^3=(a+b)(a^2-ab+b^2)
=2(20+8)=56
Vậy a^3+b^3=56