Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Thủy Trương

Cho a+b=1

Chứng minh (1+1/a)×(1+1/b)>=9

Không Tên
10 tháng 5 2018 lúc 19:47

mình bổ sung thêm đề:  a,b dương

             BÀI LÀM

       \(\left(1+\frac{1}{a}\right)\left(1+\frac{1}{b}\right)\)

\(=\left(1+\frac{a+b}{a}\right)\left(1+\frac{a+b}{b}\right)\)   (thay a+b = 1)

\(=\left(1+\frac{a}{a}+\frac{b}{a}\right)\left(1+\frac{a}{b}+\frac{b}{b}\right)\)

\(=\left(2+\frac{b}{a}\right)\left(2+\frac{a}{b}\right)\)

\(=4+2\left(\frac{a}{b}+\frac{b}{a}\right)+\frac{b}{a}.\frac{a}{b}\)

\(=5+2\left(\frac{a}{b}+\frac{b}{a}\right)\) \(\ge5+2.2=9\)    (1)

c/m:  \(\frac{a}{b}+\frac{b}{a}\ge2\)   với a,b dương

  \(\Leftrightarrow\) \(\frac{a^2}{ab}+\frac{b^2}{ab}\ge\frac{2ab}{ab}\)

 \(\Leftrightarrow\)\(\frac{a^2}{ab}+\frac{b^2}{ab}-\frac{2ab}{ab}\ge0\)

\(\Leftrightarrow\)\(\frac{\left(a-b\right)^2}{ab}\ge0\)  luôn đúng

Dấu "=" xảy ra  \(\Leftrightarrow\)\(a=b\)

Vậy  BĐT (1) đã được chứng minh 

Dấu "=" xảy ra  \(\Leftrightarrow\)\(a=b=\frac{1}{2}\)

Kaya Renger
10 tháng 5 2018 lúc 22:41

Theo Cauchy , ta có \(a+b\ge2\sqrt{ab}\Rightarrow\sqrt{ab}\le\frac{a+b}{2}\)

Áp dụng bất đẳng thức Bunyakovsky , ta có :

\(\left(1+\frac{1}{a}\right)\left(1+\frac{1}{b}\right)\ge\left(1+\frac{1}{\sqrt{a}.\sqrt{b}}\right)^2\ge\left(1+\frac{1}{\frac{\left(a+b\right)}{2}}\right)^2=\left(1+2\right)^2=9\)

Đẳng thức xảy ra <=> a = b = 1/2 


Các câu hỏi tương tự
Hoàng Peter
Xem chi tiết
Trung Hải 8A Hoàng
Xem chi tiết
cute
Xem chi tiết
Nguyễn Tùng
Xem chi tiết
Lê Quang Thắng
Xem chi tiết
Lê Thị Dung
Xem chi tiết
tui là việt quất
Xem chi tiết
Trần Thị Thùy Luyến
Xem chi tiết
Minh Ngọc Aurora
Xem chi tiết