Cho a,b\(\ge\)1 CMR:
a, \(a\sqrt{b-1}+b\sqrt{a-1}\le ab\)
b, \(a+\frac{1}{\left(a+1\right)^2}\ge\frac{3\sqrt[3]{4}}{4}\)
cmr\(\frac{\left(a+b\right)^2}{2}+\frac{a+b}{4}\ge a\sqrt{b}+b\sqrt{a}\left(a,b>0\right)\)
cho a,b,c là số thực dương thỏa mãn \(abc\le1\)
CMR:
\(\frac{a^3+1}{b\sqrt{a^2+1}}+\frac{b^3+1}{c\sqrt{b^2+1}}+\frac{c^3+1}{a\sqrt{c^2+1}}\ge\sqrt{2}\left(a+b+c\right)\)
Cho a,b,c là số dương. CMR:
1. \(\left(1+a\right)\left(1+b\right)\left(1+c\right)\ge\left(1+\sqrt[3]{abc}\right)^3\)
2. \(a^2\sqrt{bc}+b^2\sqrt{ac}+c^2\sqrt{ab}\le a^3+b^3+c^3\)
3. \(\dfrac{a^2}{b+c}+\dfrac{b^2}{c+a}+\dfrac{c^2}{a+b}\ge\dfrac{a+b+c}{2}\)
cho các số thực dương a,b,c thỏa mãn \(\sqrt{a}+\sqrt{b}+\sqrt{c}=1\)
cmr \(\frac{a^2+bc}{\sqrt{2a^2\left(b+c\right)}}+\frac{b^2+ca}{\sqrt{2b^2\left(c+a\right)}}+\frac{c^2+ab}{\sqrt{2c^2\left(a+b\right)}}\ge1\)
Cho 3 số thực dương a,b,c. CMR \(\frac{a^2}{\sqrt{3a^2+8b^2+14ab}}+\frac{b^2}{\sqrt{3b^2+8c^2+14bc}}+\frac{c^2}{\sqrt{3c^2+8a^2+14ac}}\ge\frac{1}{5}\left(a+b+c\right)\)
1:Cho x;y>0:\(\frac{2}{x}+\frac{3}{y}=6\).Tìm min P=x+y
2:Cho x;y;z>0:x+y+z\(\le\)1.Chứng minh\(\sqrt{x^2+\frac{1}{x^2}}+\sqrt{y^2+\frac{1}{y^2}}+\sqrt{z^2+\frac{1}{z^2}}\ge\sqrt{82}\)
3:cho a;b;c;d>0.Chứng minh\(\frac{a^2}{b^5}+\frac{b^2}{c^5}+\frac{c^2}{d^5}+\frac{d^2}{a^5}\ge\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}+\frac{1}{d^3}\)
4:Tìm max,min y=x+\(\sqrt{4-x^2}\)
5:Cho \(a\ge1;b\ge1\).Chứng minh \(a\sqrt{b-1}+b\sqrt{a-1}\le ab\)
6:Chứng minh:\(\left(ab+bc+ca\right)^2\ge3\text{a}bc\left(a+b+c\right)\)
cmr
\(\frac{\left(a+b\right)^2}{2}+\frac{a+b}{4}\ge a\sqrt{a}+b\sqrt{b}\)
cho a,b,c> 0 thỏa mãn a+b+c = abc. Tìm GTLN của
\(S=\frac{a}{\sqrt{bc\left(1+a^2\right)}}+\frac{b}{\sqrt{ca\left(1+b^2\right)}}+\frac{c}{\sqrt{ab\left(1+c^2\right)}}\)
cho a,b,c > 0 .Cmr:
\(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\ge\sqrt{a^2-ab+b^2}+\sqrt{b^2-bc+c^2}+\sqrt{c^2-ca+a^2}\)