cho a,b,c là số thực dương thỏa mãn ab+bc+ac=abc
CMR: \(\frac{\sqrt{b^2+2a^2}}{ab}+\frac{\sqrt{c^2+2b^2}}{bc}+\frac{\sqrt{a^2+2c^2}}{ca}>\sqrt{3}\)
Cho a, b, c là các số thực dương thỏa mãn \(\sqrt{a}+\sqrt{b}+\sqrt{c}=1\) . Cmr
\(\sqrt{\dfrac{ab}{a+b+2c}}+\sqrt{\dfrac{bc}{c+b+2a}}+\sqrt{\dfrac{ca}{a+c+2b}}\le\dfrac{1}{2}\)
cho a,b,c> 0 thỏa mãn a+b+c = abc. Tìm GTLN của
\(S=\frac{a}{\sqrt{bc\left(1+a^2\right)}}+\frac{b}{\sqrt{ca\left(1+b^2\right)}}+\frac{c}{\sqrt{ab\left(1+c^2\right)}}\)
Cho a,b,c >0 thỏa mãn \(15\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)=10\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\right)+2007\) .Tìm GTNN của \(P=\frac{1}{\sqrt{5a^2+2ab+2b^2}}+\frac{1}{\sqrt{5b^2+2bc+2c^2}}+\frac{1}{\sqrt{5c^2+2ac+2a^2}}\)
Giúp e mấy bài này với ạ.
1) Cho a, b, c là các số thực không âm thỏa mãn ab + bc + ca = 1.
Chứng minh rằng: \(\frac{3ab+1}{a+b}+\frac{3bc+1}{b+c}+\frac{3ac+1}{c+a}\ge4.\)
2) Cho các số thực dương a, b, c sao cho \(\frac{1}{1+a}+\frac{1}{1+b}+\frac{1}{1+c}\le1\)
Chứng minh rằng: \(\left(1+a^2\right)\left(1+b^2\right)\left(1+c^2\right)\ge125.\)
3) Cho ba số thực dương a, b, c thỏa mãn a + b + c = 3. Tìm giá trị nhỏ nhất của biểu thức
P = \(\frac{a^2+b^2}{9-ab}+\frac{b^2+c^2}{9-bc}+\frac{c^2+a^2}{9-ca}.\)
4) Cho a, b, c là các số thực dương. Chứng minh rằng: \(\sqrt{\frac{bc}{a\left(3b+a\right)}}+\sqrt{\frac{ac}{b\left(3c+b\right)}}+\sqrt{\frac{ab}{c\left(3a+c\right)}}\ge\frac{3}{2}\)
cho a,b,c là số thực dương thỏa mãn \(abc\le1\)
CMR:
\(\frac{a^3+1}{b\sqrt{a^2+1}}+\frac{b^3+1}{c\sqrt{b^2+1}}+\frac{c^3+1}{a\sqrt{c^2+1}}\ge\sqrt{2}\left(a+b+c\right)\)
cho a,b,c > 0 thỏa mãn \(a^2+b^2+c^2=1\) . Cmr:
\(\sqrt{\frac{ab+2c^2}{1+ab-c^2}}+\sqrt{\frac{bc+2a^2}{1+bc-a^2}}+\sqrt{\frac{ca+2b^2}{1+ac-b^2}}\ge2+ab+bc+ca\)
Cho a,b,c là số dương. CMR:
1. \(\left(1+a\right)\left(1+b\right)\left(1+c\right)\ge\left(1+\sqrt[3]{abc}\right)^3\)
2. \(a^2\sqrt{bc}+b^2\sqrt{ac}+c^2\sqrt{ab}\le a^3+b^3+c^3\)
3. \(\dfrac{a^2}{b+c}+\dfrac{b^2}{c+a}+\dfrac{c^2}{a+b}\ge\dfrac{a+b+c}{2}\)
Cho 3 số thực dương a,b,c. CMR \(\frac{a^2}{\sqrt{3a^2+8b^2+14ab}}+\frac{b^2}{\sqrt{3b^2+8c^2+14bc}}+\frac{c^2}{\sqrt{3c^2+8a^2+14ac}}\ge\frac{1}{5}\left(a+b+c\right)\)