Mẫu thức như vầy thì tìm max còn được chứ tìm min sao nổi bạn?
\(15\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)+30\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)=40\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)+2007\)
\(\Leftrightarrow15\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2=40\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)+2007\)
\(\Leftrightarrow15\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2\le\frac{40}{3}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2+2007\)
\(\Leftrightarrow\frac{5}{3}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2\le2007\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\le\sqrt{\frac{6021}{5}}\)
Ta có:
\(5a^2+2ab+2b^2=4a^2+2ab+b^2+a^2+b^2\ge4a^2+2ab+b^2+2ab=\left(2a+b\right)^2\)
\(\Rightarrow\sqrt{5a^2+2ab+2b^2}\ge2a+b\Rightarrow\frac{1}{\sqrt{5a^2+2ab+2b^2}}\le\frac{1}{2a+b}\)
\(\Rightarrow P\le\frac{1}{2a+b}+\frac{1}{2b+c}+\frac{1}{2c+a}=\frac{1}{a+a+b}+\frac{1}{b+b+c}+\frac{1}{c+c+a}\)
\(\Rightarrow P\le\frac{1}{9}\left(\frac{1}{a}+\frac{1}{a}+\frac{1}{b}+\frac{1}{b}+\frac{1}{b}+\frac{1}{c}+\frac{1}{c}+\frac{1}{c}+\frac{1}{a}\right)=\frac{1}{3}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
\(\Rightarrow P\le\frac{1}{3}\sqrt{\frac{6021}{5}}\)
Dấu "=" xảy ra khi \(a=b=c=3\sqrt{\frac{5}{6021}}\)