\(J=\frac{1}{a^2+b^2}+\frac{1}{2ab}+\frac{1}{2ab}\ge\frac{4}{a^2+b^2+2ab}+\frac{1}{\frac{2\left(a+b\right)^2}{4}}=\frac{6}{\left(a+b\right)^2}\ge6\)
\(\Rightarrow J_{min}=6\) khi \(a=b=\frac{1}{2}\)
\(J=\frac{1}{a^2+b^2}+\frac{1}{2ab}+\frac{1}{2ab}\ge\frac{4}{a^2+b^2+2ab}+\frac{1}{\frac{2\left(a+b\right)^2}{4}}=\frac{6}{\left(a+b\right)^2}\ge6\)
\(\Rightarrow J_{min}=6\) khi \(a=b=\frac{1}{2}\)
cho a,b>0 (a+b<=1). tim GTNN cua M=a+b+\(\frac{1}{a}+\frac{1}{b}\)
cho a.b>0 (a+b<=1) tim GTNN cua N=\(\sqrt{a+b}\sqrt{\frac{1}{a}+\frac{1}{b}}\)
cho a,b > 0 thỏa mãn a+b=1
Tìm GTNN của \(A=\frac{19}{ab}+\frac{6}{a^2+b^2}+2018\left(a^4+b^4\right)\)
cho a,b,c > 0 thỏa mãn \(a+b+c\le\frac{3}{2}\)
Tìm GTNN của \(A=\sqrt{a^2+\frac{1}{b^2}}+\sqrt{b^2+\frac{1}{c^2}}+\sqrt{c^2+\frac{1}{a^2}}\)
cho a,b,c > 0 thỏa mãn \(a+b+c\le2\)
Tìm GTNN của \(A=21\left(a^2+b^2+c^2\right)+12\left(a+b+c\right)^2+2015\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
a,b,c>0 \(\frac{1}{\sqrt[3]{a+2b}}\) +\(\frac{1}{\sqrt[3]{b+2c}}\) +\(\frac{1}{\sqrt[3]{c+2a}}\) tim gtnn
Cho a,b,c > 0 thỏa mãn a+b+c=1. Chứng minh rằng: \(\frac{1}{a^2+b^2+c^2}+\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\)
Cho a,b>0 và ab=1 CMR \(\frac{1}{a}+\frac{1}{b}+\frac{2}{a+b}\ge3\)
CHUYÊN ĐỀ BẤT ĐẲNG THỨC
1, Cho a,b,c >0 Chứng minh \(\frac{2}{\left(a+b\right)^2}+\frac{2}{\left(b+c\right)^2}+\frac{2}{\left(c+a\right)^2}\ge\frac{1}{a^2+bc}+\frac{1}{b^2+ca}+\frac{1}{c^2+ab}\)