\(M=a+b+\frac{1}{a}+\frac{1}{b}\ge a+b+\frac{4}{a+b}=a+b+\frac{1}{a+b}+\frac{3}{a+b}\)
\(\Rightarrow M\ge2\sqrt{\frac{a+b}{a+b}}+3=5\)
\(\Rightarrow M_{min}=5\) khi \(a=b=\frac{1}{2}\)
\(M=a+b+\frac{1}{a}+\frac{1}{b}\ge a+b+\frac{4}{a+b}=a+b+\frac{1}{a+b}+\frac{3}{a+b}\)
\(\Rightarrow M\ge2\sqrt{\frac{a+b}{a+b}}+3=5\)
\(\Rightarrow M_{min}=5\) khi \(a=b=\frac{1}{2}\)
cho a,b>0(a+b<=1) tim GTNN cua J=\(\frac{1}{a^2+b^2}+\frac{1}{ab}\)
cho a.b>0 (a+b<=1) tim GTNN cua N=\(\sqrt{a+b}\sqrt{\frac{1}{a}+\frac{1}{b}}\)
cho a,b,c > 0 thỏa mãn \(a+b+c\le\frac{3}{2}\)
Tìm GTNN của \(A=\sqrt{a^2+\frac{1}{b^2}}+\sqrt{b^2+\frac{1}{c^2}}+\sqrt{c^2+\frac{1}{a^2}}\)
a,b,c>0 \(\frac{1}{\sqrt[3]{a+2b}}\) +\(\frac{1}{\sqrt[3]{b+2c}}\) +\(\frac{1}{\sqrt[3]{c+2a}}\) tim gtnn
cho a,b,c > 0 thỏa mãn \(a+b+c\le2\)
Tìm GTNN của \(A=21\left(a^2+b^2+c^2\right)+12\left(a+b+c\right)^2+2015\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
cho a,b > 0 thỏa mãn a+b=1
Tìm GTNN của \(A=\frac{19}{ab}+\frac{6}{a^2+b^2}+2018\left(a^4+b^4\right)\)
Tìm GTNN của
1.\(B=a+\frac{4}{\left(a-b\right)\left(b+1\right)^2}\) với a>b>0
2. \(C=a+\frac{1}{b\left(a-b\right)^2}\) với a>b>1
1/cho số a >0 tìm GTNN của P = 2a +\(\frac{4}{a}\)+\(\frac{16}{a+2}\)
2/ cho a,b,c là số thực ϵ [0;\(\frac{1}{4}\)) chứng minh:
\(\sqrt{a\left(1-4a\right)}+\sqrt{b\left(1-4b\right)}+\sqrt{c\left(1-4c\right)}\le\frac{3}{4}\)
3/ cho các số dương a,b,c tỏa abc = 1. Chứng minh
\(\frac{1}{a^2c+b^2c+1}+\frac{1}{b^2a+c^2a+1}+\frac{1}{c^2b+a^2b+1}\le1\)
cho 3 số a,b,c dương thỏa mãn: a+b+c=1. Tìm GTNN của biều thức sau : P=\(\frac{a^3}{\left(1-a\right)^2}+\frac{b^3}{\left(1-b\right)^2}+\frac{c^3}{\left(1-c\right)^2}\)