Đề thiếu. Bạn xem lại đề.
Đề thiếu. Bạn xem lại đề.
1/cho số a >0 tìm GTNN của P = 2a +\(\frac{4}{a}\)+\(\frac{16}{a+2}\)
2/ cho a,b,c là số thực ϵ [0;\(\frac{1}{4}\)) chứng minh:
\(\sqrt{a\left(1-4a\right)}+\sqrt{b\left(1-4b\right)}+\sqrt{c\left(1-4c\right)}\le\frac{3}{4}\)
3/ cho các số dương a,b,c tỏa abc = 1. Chứng minh
\(\frac{1}{a^2c+b^2c+1}+\frac{1}{b^2a+c^2a+1}+\frac{1}{c^2b+a^2b+1}\le1\)
Cho a;b;c>0:abc=1.CMR:
\(\sqrt[3]{\frac{b+c}{2a}}+\sqrt[3]{\frac{c+a}{2b}}+\sqrt[3]{\frac{a+b}{2c}}\le\frac{5\left(a+b+c\right)+9}{8}\)
\(\sqrt{\frac{a}{2a+b+c}}+\sqrt{\frac{b}{a+2b+c}}+\sqrt{\frac{c}{a+b+2c}}\le\frac{3}{2}\)
Cho a,b,c > 0 thỏa mãn: a + b + c = 3. Chứng minh rằng:
\(\sqrt[3]{\frac{3}{abc}}+\sqrt[3]{\frac{9}{a^2b+b^2c+c^2a}}\ge2\sqrt[3]{3}\)
Cho a,b,c là các số ko âm thỏa mãn \(ab+ac+bc\ne0\).CMR
\(\sqrt{\frac{8ab+8ac+9bc}{(2b+c)(b+2c)}}+\sqrt{\frac{8ab+8bc+9ac}{(2a+c)(a+2c)}}+\sqrt{\frac{8ac+8bc+9ab}{(2a+b)(a+2b)}}\geq5\)
cho a,b,c > 0 thỏa mãn \(a+b+c\le\frac{3}{2}\)
Tìm GTNN của \(A=\sqrt{a^2+\frac{1}{b^2}}+\sqrt{b^2+\frac{1}{c^2}}+\sqrt{c^2+\frac{1}{a^2}}\)
cho a.b>0 (a+b<=1) tim GTNN cua N=\(\sqrt{a+b}\sqrt{\frac{1}{a}+\frac{1}{b}}\)
Cho a,b,c >0 . Chứng minh rằng : \(\frac{a}{b+2c}+\frac{b}{c+2a}+\frac{c}{a+2b}=1+\frac{b}{b+2a}+\frac{c}{c+2b}+\frac{a}{a+2c}\)
cho các số a,b,c > 0. chứng minh:
1.\(\frac{a^2}{a+2b}+\frac{b^2}{b+2c}+\frac{c^2}{c+2a}\ge\frac{a+b+c}{3}\)
2.\(\frac{a^2}{2a+3b}+\frac{b^2}{2b+3c}+\frac{c^2}{2c+3a}\ge\frac{a+b+c}{5}\)