Ta có:
\(\frac{1}{a}+\frac{1}{b}+\frac{2}{a+b}=\frac{a+b}{ab}+\frac{2}{a+b}\) . Do giả thiết cho \(ab=1\)
\(\Rightarrow\frac{a +b}{ab}+\frac{2}{a+b}=a+b+\frac{2}{a+b}=\frac{a+b}{2}+\frac{a+b}{2}+\frac{2}{a+b}\)
Áp dụng Bất đẳng thức Cô-si: \(\frac{x+y}{2}\ge\sqrt{xy}\)
Ta có: \(\frac{a+b}{2}\ge\sqrt{ab}=1\)
Ta sẽ chứng minh BĐT phụ sau: với z >0 thì
\(z+\frac{1}{z}\ge2\Leftrightarrow\frac{z^2+1-2z}{z}\ge0\Leftrightarrow\frac{\left(z-1\right)^2}{z}\ge0\)
Áp dụng BĐT trên => \(\frac{a+b}{2}+\frac{2}{a+b}\ge2\) (khi a+b>0)Vậy \(a+b+\frac{2}{a+b}\ge3\Leftrightarrow\frac{1}{a}+\frac{1}{b}+\frac{2}{a+b}\ge3\)