Cho a,b>0; a+b>=3. Tìm minA=a^2+b^2+28/a+1/b
Giúp mình với ạ!!!!!
cho a2+b2+c2=1, tìm minA=bc/a+ab/c+ac/b.
1.cho a,b >0, a+b<=1. tìm min P= (1/a^2+b^2)+1/ab
2.cho a,b >0, a+b<=1. tìm min P= (1/a^2+b^2)+1/2ab
3. cho a,b >0, a+b<=1. tìm min P= (1/a^2+b^2)+1/ab+4ab
cho a,b,c thoả mãn a,b,c>0 và a+b+c<=1. tìm GTNN của a^2 + b^2 + c^2 + 1/a^2 + 1/b^2 + 1/c^2
cho a, b, c >0 và a+b+c=1 tìm minP= 1/(1-a) + 1/(1-b) + 1/(1-c) + 2(a-a2-ab)/(a+c)2
1. Tìm max và min
a) \(A=\sqrt{x-3}+\sqrt{7-x}\)
b) \(B=\dfrac{3+8x^2+12x^4}{\left(1+2x^2\right)^2}\)
2. Cho \(36x^2+16y^2=9\)
\(CM:\dfrac{15}{4}\text{≤}y-2x+5\text{≤}\dfrac{25}{4}\)
a, Cho a,b,c > 0. cmr : P = 1/a+3b + 1/b+3c + 1/c+3a >= 1/a+2b+c + 1/b+2c+a + 1/c+2a+b
b, Cho a,b > 0 : a^2 + b^2 = 18 . Tìm GTNN của biểu thức : Q = 2a + 2b + a^2/b + b^2/a
Ai làm nhanh và đúng nhất mk tick cho nha
Cho a, b, c > 0 và \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=3\) . Tìm MAX của :
A= \(\dfrac{1}{\sqrt{a^2-ab+b^2}}+\dfrac{1}{\sqrt{b^2-bc+c^2}}+\dfrac{1}{\sqrt{c^2-ac+a^2}}\)
Cho a, b, c > 0 và \(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}=\dfrac{1}{3}\) .
Tìm MAX : A= \(\dfrac{1}{a^2+bc}+\dfrac{1}{b^2+ca}+\dfrac{1}{c^2+ab}\)