cho a > b > 0 thoả mãn 3(a^2 + b^2) = 10ab tính K = a+b/ a-b ( dùng bđt )
cho a,b thoả mãn a^3 + 2b^2 -4b + 3 = 0 và a^2 + a^2b^2 - 2b = 0 tính a^2 + b^2
cho |a| khác |b| và ab khác 0 thoả mãn (a−b)/(a^2+ab) + (a+b)/(a^2−ab) = (3a−b)/(a^2−b^2).Tính B=(a^3+2a^2b+3b^2)/(2a^3+a^2b+b^3)
cho các số a,b,c thoả mãn
\(\left\{{}\begin{matrix}a+b+c=0\\a^2+b^2+c^2=1\end{matrix}\right.\)
Tính M=\(a^4+b^4+c^4\)
cho ba số a,b,c khác 0 thoả mãn a^2+b^2+c^2=(a+b+c)^2 Tính giá trị biểu thức p=b+c/a+a+c/b+a+b/c
a,cho x+y>=6;x,y>0,tìm min của p=5x+3y+10/x+8/y
b, a;b;c là 3 số thực dương thoả mãn a+2b+3c>=20. Tìm min của a+b+c+3/a+9/b+4/c
c,Cho x;y>0 thoả mãn x+y<=1, tìm min A=(1-1/x)-(1/y^2)
d,Cho a;b;c >0, a+b+c=<3/2, tìm min của A=a+b+c+1/a+1/b+1/c
e, Cho a,b dương,a;b=<1, tìm min của P=1/(a^2+b^2) +1/ab
g,Cho a;b;c>0, a+b+c=<1, tìm min của P=a+b+c+2(1/a+1/b+1/c)
cho ba số a,b,c thoả mãn a+B+C=0 và \(a^2+b^2+c^2=2016\).Tính \(A=a^4+b^4+c^4\)
Bài 1: Cho 3 số thực a, b,c thoả mãn (a+b+c):ab - (b+c-a):bc - (c+a-b):ac = 0
Chứng ming rằng: trong ba biểu thúc ở vế trái thì có ít nhất một biểu thức bằng 0.
Bài 2: Cho a+b+c = 0 (abc khác 0). Rút gọn biểu thức:
A= a2 : (a2 - b2 - c2) + b2 : (b2 - c2 - a2) + c2 : (c2 - b2 - a2)
Bài 3: Cho 3 số thực a,b,c đôi một khác nhau thoả mãn a+b+c = 0. Tính giá trị biểu thức:
M= [ (a-b):c + (b-c):a + (c-a):b ] [ c:(a-b) + a:(b-c)+ b:(c-a) ]