\(\left(a-1\right)^2+\left(b-2\right)^2=5\Leftrightarrow2a+4b=a^2+b^2\)
\(\left(a-2\right)^2+\left(b-4\right)^2\ge0\Rightarrow a^2+b^2\ge4a+8b-20\)
\(\Rightarrow2a+4b\ge4a+8b-20\)
\(\Leftrightarrow a+2b\le10\)
\(\left(a-1\right)^2+\left(b-2\right)^2=5\Leftrightarrow2a+4b=a^2+b^2\)
\(\left(a-2\right)^2+\left(b-4\right)^2\ge0\Rightarrow a^2+b^2\ge4a+8b-20\)
\(\Rightarrow2a+4b\ge4a+8b-20\)
\(\Leftrightarrow a+2b\le10\)
Cho a, b thỏa mãn điều kiện (a-1)^2+(b-1)^2=5.
Chứng minh a+2b>=10
a)Cho các số thực không âm a,b,c thỏa mãn điều kiện a+b+c=1
cm: \(a^3+b^3+c^3\le\frac{1}{8}+a^4+b^4+c^4\)
b)Cho a,b,c là các số thực thỏa mãn a+b+c=1. Chứng minh:
\(\frac{a}{a^2+1}+\frac{b}{b^2+1}+\frac{c}{c^2+1}\le\frac{9}{10}\)
Cho các số thực dương a,b,c thỏa mãn điều kiện a+b+c=3. CMR:
\(\frac{1}{2+a^2b}+\frac{1}{2+b^2c}+\frac{1}{2+c^2a}\ge1\)
cho a,b là hai số thực thỏa mãn (a-1)^2+(b-2)^2=5. cmr a+2b<=10
Cho các số thực dương a,b,c thỏa mãn điều kiện a + b + c = 2019
Tìm min của biểu thức: \(P=\sqrt{2a^2+ab+2b^2}+\sqrt{2b^2+bc+2c^2}+\sqrt{2a^2+2ca+a^2}\)
cho a,b,c là các số thực dương thỏa mãn a^2+b^2+c^2=3
cm 1/(1+a^2b^2) +1/(1+b^2c^2) +1/(1+c^2a^2) >=9/(2a+2b+2c)
Cho a,b là các só thực dương thỏa mãn a+b=2. Tìm GTNN của
A= \(a^3+b^3+\dfrac{6}{a^2+b^2}+3ab\)
Bài1: Giải phương trình sau:
(x2+5)(x2+10x)=6(2x-1)2
Bài 2:
a, Cho 1<=a,b,c<=3 thỏa mãn a2+b2+c2=19. Tìm giá trị nhỏ nhất của E=a+b+c.
b, Cho x,y,z>0 thỏa mãn điều kiện (x+y)(y+z)(z+x)=8. Chứng minh rằng (x+2y+z)(y+2z+x)(z+2y+x)>=64.
Bài 4: Cho các số tự nhiên a,b thỏa mãn điều kiện 2a2+a=6b2+b. Chứng minh rằng a-b, 2a+2b,2a+2a+1 đều là các số chính phương.
Cho a,b là các số thực thỏa mãn điều kiện a^2+b^2=4+ab
Chứng minh 8/3<=a^2+b^2<=8