Cho a,b,c là các số thực dương thỏa mãn a + b + c = 3 Chứng minh rằng : \(\frac{a}{a+b+1}+\frac{b}{b+c+1}+\frac{c}{c+a+1}\le1\)
Cho a,b,c là các số dương thỏa mãn 3(ab+bc+ac)=1. Chứng minh rằng a/(a^2-bc+1) +b/(b^2-ac+1) + c/(c^2-ab+1) > 1/(a+b+c)
Cho a,b,c là các số dương thỏa mãn : \(a^4+b^4+c^4=3\)
Chứng minh rằng : \(\frac{1}{4-ab}+\frac{1}{4-bc}+\frac{1}{4-ca}\le1\)
Với các số dương a, b, c thỏa mãn a+b+c=3abc, chứng minh rằng:
\(a^4b^4+b^4c^4+c^4a^4>=3a^4b^4c^4\)
Với các số dương a, b, c. Chứng minh rằng:
\(\frac{a^5}{bc^2}+\frac{b^5}{ca^2}+\frac{c^5}{ab^2}>=a^2+b^2+c^2\)
Với các số dương a, b, c. Chứng minh rằng:
\(\frac{a^3}{\left(b+2c\right)^2}+\frac{b^3}{\left(c+2a\right)^2}+\frac{c^3}{\left(a+2b\right)^2}>=\frac{1}{9}\left(a+b+c\right)\)
cho a,b>0 thỏa mãn a3+b3 =a5+b5.chứng minh \(a^2+b^2\le1+ab\)
Cho a, b là số hữu tỉ dương thỏa mãn a^5 + b^5 = 2(ab)^2. Chứng minh √(1 - ab) là số hữu tỉ (
Cho a,b,c là các số dương thỏa mãn abc=1. Chứng minh rằng:
\(\frac{a^2b^2}{a^7+a^2b^2+b^7}+\frac{b^2c^2}{b^7+b^2c^2+c^7}+\frac{c^2a^2}{c^7+c^2a^2+a^7}\le1\)
a) Cho x,y,z là các số dương thỏa mãn x2+y2+z2=3, tìm giá trị nhỏ nhất của F=\(\dfrac{x^2+1}{z+2}\)+\(\dfrac{y^2+1}{x+2}\)+\(\dfrac{z^2+1}{y+2}\)
b) Với a,b,c > 0 thỏa mãn ab+bc+ca=3, chứng minh rằng
\(\sqrt{\dfrac{a}{a+3}}\) +\(\sqrt{\dfrac{b}{b+3}}\)+\(\sqrt{\dfrac{c}{c+3}}\)\(\le\)\(\dfrac{3}{2}\)
cho a, b là các số nguyên dương thỏa mãn a^3+b^3=a^5+b^5. CMR: a^2+b^2< hoặc =1+ab