A=3(3+1)+3^2(3+1)+.....+3^59(3+1) =4(3+3^2+.....+3^59) CHIA HẾT CHO 4
\(P=a^5b-ab^5=ab\left(a^4-b^4\right)=ab\left(a^2-b^2\right)\left(a^2+b^2\right)=ab\left(a-b\right)\left(a+b\right)\left(a^2+b^2\right)\)
Nếu a hoặc b chẵn => P chẵn; Nếu cả a;b lẻ thì a - b chẵn => P chẵn => P chia hết cho 2 với mọi a;bNếu a hoặc b chia hết cho 3 => P chia hết cho 3. Nếu cả a;b chia cho 3 cùng số dư thì a - b chia hết cho 3 => P chia hết cho 3. Nếu a;b chia 3 khác số dư, tức là dư là 1 và 2 thì tổng a+b chia hết cho 3. Do đó, P chia hết cho 3 với mọi a;bViết lại \(P=ab\left(a^4-b^4\right)=ab\left(a^4-1-\left(b^4-1\right)\right)\). Dùng hệ quả 1 của định lý Fermat nhỏ : với mọi số nguyên tố p thì Xp-1 - 1 chia hết cho p với mọi X nguyên. Ta cũng suy ra được a4 - 1 và b4 - 1 đều chia hết cho 5 nên P chia hết cho 5.P chia hết cho 2; 3; 5 nên P chia hết cho 2*3*5 = 30. ĐPCM