ta có : a+ b+ c=0
=>(a+b+c)^2=0
<=>a^2+b^2+c^2+2ac+2ab+2bc=0
=>a^2+b^2+c^2=-2ac-2ab-2bc=-2(ac+ab+bc)=-2.0=0
=>a=b=c=0
nên A =(a-1)^2015 + b^2016 + (c+1)^2017
=(0-1)2015 + 0^2016 +(0+ 1)^2017
=-1 +1
=0
ta có : a+ b+ c=0
=>(a+b+c)^2=0
<=>a^2+b^2+c^2+2ac+2ab+2bc=0
=>a^2+b^2+c^2=-2ac-2ab-2bc=-2(ac+ab+bc)=-2.0=0
=>a=b=c=0
nên A =(a-1)^2015 + b^2016 + (c+1)^2017
=(0-1)2015 + 0^2016 +(0+ 1)^2017
=-1 +1
=0
cho a^2+b^2+c^2=ab+bc+ac
Tính giá trị biểu thức (a-b+1)^2018+(b-c-1)^2017+(a-c)^2016
Cho a+b+c=0 và ab+ac+bc=0
Tính giá trị của P=(a-2017)^2018+(b-2017)^2018-(c+2017)^2018
Cho 1/a + 1/b +1/c=0.Tính giá trị của biểu thức M=bc/a^2 +ac/b^2 +ab/c^2 với a,b,c khác 0
Cho a, b, c là các số khác 0 thỏa mãn: ab + ac + bc = 0. Tính giá trị biểu thức M = 1/3(ab/c^2 + ac/b^2 + bc/a^2)
a)Cho a2+b2+c2=ab+ac+ca .cmr a=b=c
b)cho ba số a.b,c thỏa mãn a+b-c=0;a2+b2+c=10.tính a4+b4+c4
c)cho a+b+c=0 và ab+bc+ca=0 .Tính giá trị biểu thức P=(a-1)2017+(b-1)2017+(c-1)2017
d) tìm a,b,c thỏa mãn đẳng thức :a2-2a+b2+4b+4c2-4c+6=0
Cho a+b+c=0;ab+bc+ac=0
Tính giá trị của biểu thức:
A=(a-1)2008+b2009+(c+1)2010
Cho a,b,c khác 0 thỏa mãn abc=2015 Chứng minh 2015a/ab+2015a+2015+(b/bc+b+2015+c/ac+c+1=1
CHO a+b+C=0 ; ab+bc+ac=0 .
Tính giá trị của biểu thức A = \(\left(a-1\right)^{22}+b^{12}+\left(c-1\right)^{2014}\)
cho 1/a + 1/b + 1/c = 0. tính giá trị biểu thức bc/(a^2+2bc) + ac/(b^2+2ac) + ab/(c^2+2ab)