Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Đỗ Hồng Ngọc

cho a,b > 0 thỏa mãn \(a+b\le1\). Tìm GTNN của \(P=\frac{1}{a^2+b^2}+\frac{1}{ab}\)

tth_new
25 tháng 4 2019 lúc 9:19

Đầu tiên,ta chứng minh BĐT phụ \(\frac{\left(x+y\right)^2}{2}\ge2xy\Leftrightarrow\frac{\left(x+y\right)^2-4xy}{2}\ge0\)

\(\Leftrightarrow\left(x-y\right)^2\ge0\) (luôn đúng).Dấu "=" xảy ra khi x = y.

Và BĐT \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\).Áp dụng BĐT AM-GM(Cô si),ta có; \(\frac{1}{x}+\frac{1}{y}\ge\frac{2}{\sqrt{xy}}\ge\frac{2}{\frac{\left(x+y\right)}{2}}=\frac{4}{x+y}\)

Dấu "=" xảy ra khi x = y

\(P=\frac{1}{a^2+b^2}+\frac{1}{2ab}+\frac{1}{2ab}\)\(\ge\frac{4}{a^2+b^2+2ab}+\frac{1}{2ab}\)

\(\ge\frac{4}{\left(a+b\right)^2}+\frac{1}{\frac{\left(a+b\right)^2}{2}}\ge4+\frac{1}{\frac{1}{2}}=6\)

Dấu "=" xảy ra khi a = b và a + b = 1 tức là a=b=1/2

Vậy Min P = 6 khi a = b = 1/2 


Các câu hỏi tương tự
Trần Bích Ngân
Xem chi tiết
Called love
Xem chi tiết
Nguyễn Công Minh Hoàng
Xem chi tiết
Nguyễn Thị Quỳnh Nga
Xem chi tiết
Xem chi tiết
hung
Xem chi tiết
Hoàng Ngoc Diệp
Xem chi tiết
Quyết Tâm Chiến Thắng
Xem chi tiết
Thỏ bông
Xem chi tiết