\(a^2=b.c\Rightarrow\frac{a}{b}=\frac{c}{a}\)
=> \(\frac{a}{c}=\frac{b}{a}=\frac{a+b}{c+a}=\frac{a-b}{c-a}\Rightarrow\frac{a+b}{a-b}=\frac{c+a}{c-a}\left(đpcm\right)\)
\(a^2=b.c\Rightarrow\frac{a}{b}=\frac{c}{a}\)
=> \(\frac{a}{c}=\frac{b}{a}=\frac{a+b}{c+a}=\frac{a-b}{c-a}\Rightarrow\frac{a+b}{a-b}=\frac{c+a}{c-a}\left(đpcm\right)\)
1/ Biết \(\frac{a}{b}=\frac{c}{d}\), chứng minh
a) \(\frac{a^2+b^2}{c^2+d^2}=\frac{\left(a+b\right)^2}{\left(c+d\right)^2}\)
b) \(\left(\frac{a-d}{c-b}\right)^4=\frac{a^4+b^4}{c^4+d^4}\)
2/ Cho \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\)
Chứng minh \(\left(\frac{a+b+c}{b+c+d}\right)^3=\frac{a}{b}\)
3/ Cho \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\)
Chứng minh a=b=c
Cho \(\frac{a}{b}\) = \(\frac{c}{d}\) chứng minh :
a) \(\frac{a^2 + b^2}{c^2 + d^2}\) = \(\frac{a*b}{c*d}\)
b) \(frac{(a + b)^2}{(c + d)^2}\) = \(\frac{a*b}{c*d}\)
Cho \(\frac{a}{c}=\frac{c}{b}\):
a) chứng minh: \(\frac{a^2+c^2}{b^2+c^2}=\frac{a}{b}\)
b) chứng minh: \(\frac{b^2-a^2}{a^2+c^2}=\frac{b-a}{a}\)
ai nhanh được nhận tick nha
CÁC BÀI TẬP DẠNG CHỨNG MINH TỈ LỆ THỨC
BÀI 1: Cho \(\frac{a}{b}=\frac{b}{d}\)Chứng minh \(\frac{a^2+b^2}{b^2+d^2}\)=\(\frac{a}{d}\)
Bài 2: Cho \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\) Chứng minh \(\left(\frac{â+b+c}{b+c+d}\right)^3=\frac{a}{d}\)
Bài 3: Cho \(\frac{a}{2015}=\frac{b}{2016}=\frac{c}{2017}\) Chứng minh \(\frac{\left(a-c\right)^2}{\left(a-b\right).\left(b-c\right)}=4\)
Cho\(\frac{ab}{bc}=\frac{b}{c}ckhác0\)
a) Chứng minh \(\frac{a}{b}=\frac{b}{c}\)
b) Chứng minh \(\frac{a^2+b^2}{b^2+c^2}=\frac{a}{c}\)
a, Cho \(\frac{a}{b}=\frac{b}{c}\)chứng minh \(\frac{a^2+b^2}{b^2+c^2}=\frac{a}{c}\)
b,Cho\(\frac{a}{b}=\frac{c}{d}\)chứng minh \(\frac{\left(a+b\right)^2}{\left(c+d\right)^2}=\frac{ab}{cd}\)
c,Cho \(\frac{a}{b}=\frac{c}{d}\)chứng minh \(\frac{a^2+b^2}{c^2+d^2}\)
Cho a,b,c>0.Chứng minh rằng:
\(\frac{a^3}{b^2}+\frac{b^3}{c^2}+\frac{c^3}{a^2}\ge\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\)
Cho a,b,c>0.Chứng minh rằng:
\(\frac{a^3}{b^2}+\frac{b^3}{c^2}+\frac{c^3}{a^2}\ge\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\)
Cho \(\frac{a}{c}=\frac{c}{b}\)chứng minh rằng:
a)\(\frac{a^2+c^2}{b^2+c^2}=\frac{a}{b}\)
b)\(\frac{b^2-a^2}{a^2+c^2}=\frac{b-a}{a}\)
Cho a, b, c > 0. Chứng minh rằng: \(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\ge\frac{9\left(a^2+b^2+c^2\right)}{\left(a+b+c\right)^2}\)