Ta áp dụng Bđt Cô-si
\(\left(a-b\right)^2\ge0\Leftrightarrow a^2+b^2\ge2\sqrt{a^2b^2}=2ab\left(1\right)\)
\(\left(b-c\right)^2\ge0\Leftrightarrow b^2+c^2\ge2\sqrt{b^2c^2}=2bc\left(2\right)\)
\(\left(a-c\right)^2\ge0\Leftrightarrow a^2+c^2\ge2\sqrt{a^2c^2}=2ac\left(3\right)\)
Cộng theo vế của (1),(2) và (3) có:
\(2\left(a^2+b^2+c^2\right)\ge2\left(ab+ac+bc\right)\)
\(\Rightarrow a^2+b^2+c^2\ge ab+ac+bc\)
Dấu = khi a=b=c
-->Đpcm
Ta có: \(a^2+b^2+c^2=ab+bc+ca\)
<=>\(a^2+b^2+c^2-ab-bc-ca=0\)
<=>\(2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)
<=>\(\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)
<=>\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
Vì \(\left(a-b\right)^2\ge0,\left(b-c\right)^2\ge0,\left(c-a\right)^2\ge0\)
=>\(\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}< =>\hept{\begin{cases}a=b\\b=c\\c=a\end{cases}}}\)
Vậy a=b=c
Ta có : \(a^2+b^2+c^2=ab+bc+ca\)
\(\Rightarrow a^2+b^2-c^2-ab-bc-ca=0\)
\(\Rightarrow a^2-ab+b^2-bc+c^2-ca=0\)\(0\)
\(\Rightarrow a\left(a-b\right)+b\left(b-c\right)+c\left(c-a\right)=0\)
\(\Rightarrow a\left(a-b\right)=0\) \(a=o\)
\(b\left(b-c\right)=0\)\(\Rightarrow\) \(b=0\)
\(c\left(c-a\right)=0\) \(c=0\)
\(\Rightarrow a=b=c\)
\(\Rightarrowđpcm\)
Ta có: a2 + b2 + c2 = ab + bc + ca
=> 2(a2 + b2 + c2) = 2(ab + bc + ca)
=> 2a2 + 2b2 + 2c2 = 2ab + 2bc + 2ca
=> a2 + a2 + b2 + b2 + c2 + c2 - 2ab - 2bc - 2ca = 0
=> (a2 - 2ab + b2) + (b2 - 2bc + c2) + (c2 - 2ca + a2) = 0
=> (a - b)2 + (b - c)2 + (c - a)2 = 0
<=>(a - b)2 = 0 ; (b - c)2 = 0 ; (c - a)2 = 0
=> a = b = c
Ta có: a^2 +b^2 +c^2=ab+bc+ac
suy ra 2*(a^2 +b^2 +c^2)=2*(ab+bc+ac)
suy ra 2a^2 +2b^2 +2c^2-2ab-2bc-2ac=0
suy ra (a-b)^2+(b-c)^2+(a-c)^2=0
suy ra a-b=0 , b-c=0 , a-c=0
suy ra a=b=c
Ta có:\(a^2+b^2+c^2=ab+bc+ca\)
\(\Leftrightarrow a^2+b^2+c^2-ab-bc-ca=0\)
\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)
\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c^2\right)+\left(c-a\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}\Leftrightarrow\hept{\begin{cases}a=b\\b=c\\c=a\end{cases}\Rightarrow}a=b=c}\)