Ta có : \(a^2+a+1=0\). Nhận xét : \(a\ne1\)
Nhân cả hai vế của phương trình trên với \(\left(a-1\right)\)được :
\(\left(a-1\right)\left(a^2+a+1\right)=0\Leftrightarrow a^3-1=0\Leftrightarrow a^3=1\)
Ta có : \(P=a^{1981}+\frac{1}{a^{1981}}=\left(a^3\right)^{660}.a+\frac{1}{\left(a^3\right)^{660}.a}=a.1+\frac{1}{a.1}=a+\frac{1}{a}=\frac{a^2+1}{a}=\frac{-a}{a}=-1\)
Bạn chú ý ở bài này một cách không tường minh người ta đã cho a trong trường các số phức.
Góp vui cách dài hơn Dễ thấy a ≠ 0 => a² + 1 = -a => a + 1 / a = -1 Ta xét dãy s(n) = aⁿ + 1 / aⁿ => -s(n-1) = (a + 1 / a)[a^(n-1) + 1 / a^(n-1)] = (aⁿ + 1 / aⁿ) + [a^(n-2) + 1 / a^(n-2)] = s(n) + s(n-2)
=> s(n) = -[s(n-1) + s(n-2)] = -[-[s(n-2) + s(n-3)] + s(n-2)] = s(n-3) => dãy tuần hoàn s(1) = a + 1 / a = -1, s(2) = a² + 1 / a² = (a + 1 / a)² - 2 = 1 - 2 = -1, s(3) = -[s(2) + s(1)] = 2
=> s(3k) = 2, các số hạng còn lại = -1 => P = a^1981 + 1 / a^1981 = s(1981) = -1
\(a^2+a+1=0\Rightarrow a^3=1\)
\(a^{1981}=a^{3k}.a=a\Rightarrow P=a+\frac{1}{a}=\frac{a^2+1}{a}=\frac{-a}{a}=-1\)
Tai sao \(\frac{a^2+1}{a}\) =\(\frac{-a}{a}\)
tìm số tự nhiên n để:n2012+n2002+1 là số nguyên tố