Cách 1 ( thông dụng ): Dùng định lý:
Theo đầu bài ta có:
\(\hept{\begin{cases}a^2\ge0\\b^2\ge0\\c^2\ge0\end{cases}}\Rightarrow a^2+b^2+c^2\ge0\)
Mà a2 + b2 + c2 = 0 nên suy ra: \(\hept{\begin{cases}a^2=0\\b^2=0\\c^2=0\end{cases}}\Rightarrow\hept{\begin{cases}a=0\\b=0\\c=0\end{cases}}\)
\(\Rightarrow ab+bc+ac=0\)
Cách 2: Dùng công thức:
Theo đầu bài ta có:
\(a^2+b^2+c^2=0\)
\(\Rightarrow a^2+b^2+c^2+2ab+2bc+2ac=2ab+2bc+2ac\)
\(\Rightarrow\left(a+b+c\right)^2=2\left(ab+bc+ac\right)\)
\(\Rightarrow\frac{\left(a+b+c\right)^2}{2}=ab+bc+ac\)