Cho A = {x ∈ R: x + 2 ≥ 0}, B = {x ∈ R: 5 – x ≥ 0}. Khi đó A ∩ B là
A. [−2;5].
B. [−2;6].
C. [−5;2].
D. (−2;+ ∞ ).
Bài 4.Tập hợp nào dưới đây là tập rỗng:
a)A={\(\varnothing\)}
b)B={x\(\in\)R|x2+1=0}
c)C={x\(\in\)R|x< -3 và x>6}
Bài 5.Tìm tất cả tập con của các tập hợp sau:
a)A={3;5;7}
b)B={a;b;c;d}
c)C={\(\varnothing\)}
d)D={x\(\in\)R|(x-1)(x2-5x+6)=0}
Bài 6. Cho các tập hợp: A={a;b;c;d}, B={a;b}. Hãy tìm tất cả các tập X sao cho: B\(\subset\)X\(\subset\)A.
Cho hai tập hợp A = { x ∈ R : x + 2 ≥ 0 } , B = { x ∈ R : 5 − x ≥ 0 }
Khi đó A∖B là:
A. [−2; 5].
B. [−2; 6].
C. (5; + ∞ ).
D. (2; + ∞ )
cho hai tập hợp:
A={x\(\in\)R|\(x^2\)+x-6=0 hoặc 3\(x^2\)-10x+8=0};
B={x\(\in\)R|\(x^2\)-2x-2=0 và 2\(x^2\)-7x+6=0}.
a) viết tập hợp A,B bằng cách liệt kê các phần tử của nó.
b) tìm tất cả các tập hợp sao cho \(B\subset X\) và \(X\subset A\).
Giúp với, mình cần gấp
1.Cho A= {x€ R/x ≤ -3 hoặc x>6}; B={x€ R/ x^2-25≤0}. Viết các tập hợpsau dưới dạng đoạn – khoảng- nữa khoảng
R\(A ∪ B), A ∩ B, A\B, B\A, R\(A ∩ B), R\(A\B)
Trong các tập hợp sau, tập nào là tập con của tập nào?
a)A={1;2}, B={x∈N|x≤3},
C=[1;+∞), D={x∈R|2x2-5x+2=0}
b)A={1;3}, B={x∈Z|-1≤x≤2},
C=(0;+∞), D={x∈R|(x-1)(2-x)(x-3)=0}
Cho mệnh đề chứa biến P(x), với x \(\in R\). Tìm x để P(x) là mệnh đề đúng?
a) P(x): " \(x^2-5x+4=0\) "
b) P(x): " \(x^2-5x+6=0\) "
c) P(x): " \(x^2-3x>0\) "
d) P(x): "\(\sqrt{x}>x\) "
e) P(x): " 2x+ 3<7 "
f) P(x): " \(x^2+x+1>0\) "
Bài 1:Cho A={x\(\in\)R|x2-x-6=0}, B={n\(\in\)N|2n-6≤0} và C={n\(\in\)N||n|≤4}
a)Tìm A\(\cap\)B, A\(\cap\)C, B\(\cap\)C, A\(\cap\)B\(\cap\)C
b)Tìm A\(\cup\)B, A\(\cup\)C, B\(\cup\)C, A\(\cup\)B\(\cup\)C
c)Tìm A\B, A\C, B\C
Bài 2:Cho tập E={a,b,c,d}, F={b,c,e,g}, G={c,d,e,f}. CMR:
E\(\cap\)(F\(\cup\)G)=(E\(\cap\)F)\(\cup\)(E\(\cap\)G).
Bài 1. Liệt kê các phần tử của tập hợp sau:
a) A = {x Î N | x < 6} b) B = {x Î N | 1 < x £ 5}
c) C = {x Î Z , |x| £ 3} d) D = {x Î Z | x2 - 9 = 0}
e) E = {x Î R | (x - 1)(x2 + 6x + 5) = 0} f) F = {x Î R | x2 - x + 2 = 0}
g) G = {x Î N | (2x - 1)(x2 - 5x + 6) = 0} h) H = {x | x = 2k với k Î Z và -3 < k < 13}
i) I = {x Î Z | x2 > 4 và |x| < 10} j) J = {x | x = 3k với k Î Z và -1 < k < 5}
k) K = {x Î R | x2 - 1 = 0 và x2 - 4x + 3 = 0} l) L = {x Î Q | 2x - 1 = 0 hay x2 - 4 = 0