Theo BĐT Bunhia cốp-cki ta có:
\(\left(\sqrt{3x-5}+\sqrt{7-3x}\right)^2\le\left(3x-5+7-3x\right)\left(1+1\right)=4\)
\(\Leftrightarrow\sqrt{3x-5}+\sqrt{7-3x}\le2\)
Dấu "=" xảy ra <=> \(\frac{\sqrt{3x-5}}{1}=\frac{\sqrt{7-3x}}{1}\Leftrightarrow3x-5=7-3x\Leftrightarrow x=2\)
Vậy GTNN của A là 2 <=> x=2
Dương Nhã Tịnh cái bác làm hình như là max thì phải:v
ĐK: \(\frac{5}{3}\le x\le\frac{7}{3}\)
\(A\ge\sqrt{3x-5+7-3x}=\sqrt{2}\)(áp dụng bđt \(\sqrt{a}+\sqrt{b}\ge\sqrt{a+b}\), đẳng thức xảy ra khi a hoặc b = 0)
Đẳng thức xảy ra khi \(\orbr{\begin{cases}3x-5=0\\7-3x=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{5}{3}\\x=\frac{7}{3}\end{cases}}\)
P/s: ko chắc)
uk nhỉ mk nhầm
tth_new mơn đã nhắc :))))
Asuna, có j tham khảo bài của tth_ new nha