Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Pham Trong Bach

Cho A là tập tất cả các số tự nhiên có 5 chữ số phân biệt. Chọn ngẫu nhiên một số từ tập tính xác suất để chọn được một số chia hết cho 7 và chữ số hàng đơn vị bằng 1.

A .   11 567

B .   643 45000

C .   79 4536

D .   643 13608

Cao Minh Tâm
28 tháng 6 2017 lúc 8:31

Chọn A

Vì  là tập tất cả các số tự nhiên có 5 chữ số nên 

Số phần tử của không gian mẫu là 

Gọi X là biến cố: “Chọn được một số chia hết cho 7 và chữ số hàng đơn vị bằng 1 từ tập A”.

 có tận cùng bằng 1,do đó  với   có chữ số tận cùng là 3.

Xét các trường hợp sau:

1) M là số có 4 chữ số có dạng m n p q ¯  Khi đó: 

- Với m = 1, do và q = 3 nên n  ≥ 4

+) Khi n = 4 thì p > 2 nên p ∈ {4;5;6;7;8;9}. Ta được 6 số thỏa mãn.

+) Khi n5: Có 5 cách chọn n thuộc tập hợp {5;6;7;8;9}. Khi đó p ≠ m,n,q nên p có 7 cách chọn. Ta được 35 số thỏa mãn.

- Với m2 tức là có 7 cách chọn m từ tập {2;4;5;6;7;8;9}. Khi đó  với mọi n,p thuộc tập hợp {0;1;2;4;5;6;7;8;9} và npm, do đó có 8 cách chọn n, có 7 cách chọn p. Ta được 7.8.7 = 392 số thỏa mãn

2) M là số có 5 chữ số có dạng m n p q r ¯  Khi đó:  m n p q r ¯   ≤  14285 và r = 3

Do  m n p q r ¯   ≤  14285  nên m chỉ nhận giá trị bằng 1 và n ≤ 4

- Với m=1; n = 0,2 thì p,q là các số tùy ý thuộc tập {0;2;4;5;6;7;8;9} và p ≠ q ≠ n Ta được 2.7.6 = 84 số thỏa mãn.

- Với m=1; n = 4:

+) Khi p = 0 thì q là số tùy ý thuộc tập {2;5;6;7;8;9}. Ta được 6 số thỏa mãn.

+) Khi p = 2 thì q phải thuộc tập {0;5;6;7;8}. Ta được 5 số thỏa mãn.

Vậy số phần tử của biến cố X là n(X) = 6 + 35 + 392 + 84 + 6 + 5 = 528

Xác suất để chọn được một số chia hết cho 7 và chữ số hàng đơn vị là 1 bằng

 


Các câu hỏi tương tự
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Azaki
Xem chi tiết
Azaki
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Ngân
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết