Chọn A
Ta có tất cả các số tự nhiên có 5 chữ số bắt đầu từ 10000 đến 99999 gồm 90000 số.
Do đó n ( Ω ) = 90000
Mặt khác, ta thấy cứ 70 số tự nhiên liên tiếp thì có 10 số chia hết cho 7, trong đó có 1 số có chữ số hàng đơn vị là chữ số 1.
Mà 90000 = 70x1285+50, nên ta chia 90000 số thành 1285 bộ 70 số liên tiếp và còn lại 50 số cuối, trong đó:
1285 bộ 70 số tự nhiên liên tiếp có 1285 số thỏa mãn yêu cầu
50 số cuối có 5 số tận cùng bằng 1 được xét trong bảng sau
99951 |
99961 |
99971 |
99981 |
99991 |
Chia cho 7 dư 5 |
Chia cho 7 dư 1 |
Chia cho 7 dư 4 |
Chia hết cho 7 |
Chia cho 7 dư 3 |
Vậy tất cả có 1286 số chia hết cho 7 và chữ số hàng đơn vị là chữ số 1.
Gọi là biến cố ‘Chọn được một số chia hết cho 7 và chữ số hàng đơn vị là chữ số 1’ thì n(A) = 1286
Suy ra
Cách 2:
Vì A là tập tất cả các số tự nhiên có 5 chữ số nên
Số phần tử của không gian mẫu là
Gọi X là biến cố: “Chọn được một số chia hết cho 7 và chữ số hàng đơn vị bằng 1 từ tập A”.
Khi có tận cùng bằng 1, do đó với có chữ số tận cùng là 3.
Xét các trường hợp sau:
1) M là số có 4 chữ số có dạng m n p q ¯ Khi đó:
- Với m = 1, do
+) Khi n = 4 thì p > 2 nên . Ta được 7 số thỏa mãn.
+) Khi n ≥ 5 : Có 5 cách chọn n thuộc tập hợp {5;6;7;8;9}. Khi đó p được chọn tùy ý thuộc tập {0;1;2;3;4;5;6;7;8;9}. Ta được 50 số thỏa mãn.
- Với m ≥ 2 tức là có 8 cách chọn m từ tập {2;3;4;5;6;7;8;9}. Khi đó với mọi n,p thuộc tập hợp {0;1;2;3;4;5;6;7;8;9}. Ta được 8.10.10 = 800 số thỏa mãn.
2) M là số có 5 chữ số có dạng m n p q r ¯ Khi đó:
Do m n p q r ¯ ≤ 14285 nên m chỉ nhận giá trị bằng 1 và n ≤ 4
- Với m = 1; n = 0,1,2,3 thì p,q là các số tùy ý thuộc tập {0;1;2;3;4;5;6;7;8;9}. Ta được 4.10.10 = 400 số thỏa mãn.
- Với m = 1; n = 4:
+) Khi p = 0 hoặc p = 1 thì q là số tùy ý thuộc tập {0;1;2;3;4;5;6;7;8;9}. Ta được 2.10 = 20 số thỏa mãn.
+) Khi p = 2 thì q phải thuộc tập {0;1;2;3;4;5;6;7;8}. Ta được 9 số thỏa mãn.
Vậy số phần tử của biến cố X là n(X) = 7 + 50 + 8000 + 429 = 1286
Xác suất để chọn được một số chia hết cho 7 và chữ số hàng đơn vị là 1 bằng