Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Tướng Thị Nhung

cho a là số lẻ CMR

a^3 - a chia hết cho 12

Dũng Senpai
1 tháng 1 2017 lúc 21:39

Xét:a^3-a

a.(a^2-1)

=a.(a^2-1^2)

=a.(a+1)(a-1)(hằng đẳng thức)

Có a lẻ nên a+1 và a-1 chẵn,đều chia hết cho 2.

=>tích chia hết cho 4.

Có tích 3 số tự nhiên liên tiếp luôn chia hết cho 3(1 số có dạng 3k) nên:

a(a+1)(a-1) chia hết cho 4.3=12

Vậy a^3-a chia hết cho 12.

Chúc chị học tốt^^

vũ đức phúc
1 tháng 1 2017 lúc 21:35

Mình ms học lớp 8 thôi mà. Làm thế nào được. Xin lỗi bn nhiều
 

Dũng Senpai
1 tháng 1 2017 lúc 21:37

Xét:a^3-a

a.(a^2-1)

=a.(a^2-1^2)

=a.(a+1)(a-1)(hằng đẳng thức)

Có a lẻ nên a+1 và a-1 chẵn,đều chia hết cho 2.

=>tích chia hết cho 4.

Có tích 3 số tự nhiên liên tiếp luôn chia hết cho 3(1 số có dạng 3k) nên:

a(a+1)(a-1) chia hết cho 4.3=12

Vậy a^3-a chia hết cho 12.

Chúc chị học tốt^^

Dũng Senpai
1 tháng 1 2017 lúc 21:38

Xét:a^3-a

a.(a^2-1)

=a.(a^2-1^2)

=a.(a+1)(a-1)(hằng đẳng thức)

Có a lẻ nên a+1 và a-1 chẵn,đều chia hết cho 2.

=>tích chia hết cho 4.

Có tích 3 số tự nhiên liên tiếp luôn chia hết cho 3(1 số có dạng 3k) nên:

a(a+1)(a-1) chia hết cho 4.3=12

Vậy a^3-a chia hết cho 12.

Chúc chị học tốt^^


Các câu hỏi tương tự
Nguyễn An
Xem chi tiết
Phan Thị Hồng Nhung
Xem chi tiết
hđfhehfhdhhf
Xem chi tiết
Đỗ Tố Quyên
Xem chi tiết
Võ Hoàng Anh
Xem chi tiết
Nguyễn Đức Duy
Xem chi tiết
Kim Ngân
Xem chi tiết
huuhuy
Xem chi tiết
nguyen thi huynh nhu
Xem chi tiết