Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Kiên NT

cho A là một số chính phương có bốn chữ số biết rẳng hai chữ số đầu và cuối của A giống nhau tìm a

Ntt Hồng
7 tháng 3 2016 lúc 9:25

Đặt số A là \(\overline{aabb}\)\(=n^2\) \(a,b\in N;\)\(1\le a\le9\)\(;0\le b\le9\)
\(\Rightarrow10^3a+10^2a+10b+b=n^2\)\(\Leftrightarrow11\left(100a+b\right)=n^2\)\(\Leftrightarrow11\left(99a+a+b\right)=n^2\) (1).
Do đó \(99a+a+b\) chia hết cho 11 nên \(a+b\) chia hết cho 11. Vậy, \(a+b=11\)
Thay \(a+b=11\) vào (1) ta được \(11\left(99a+11\right)=n^2=11^2\left(9a+1\right)\) . Do đó \(9a+1\) phải là số chính phương.
Thử với \(a=1,2,3,...,9\) chỉ có \(a=7\) thỏa \(9a+1=9.7+1=64=8^2\) là số chính phương. Vậy, \(a=7\) 
Mà \(a+b=11\Rightarrow b=11-a=11-7=4\) Vậy số A cần tìm là \(7744\).

Ilovehoc24
7 tháng 3 2016 lúc 21:37

+giả sử aabb=n^2 
<=>a.10^3+a.10^2+b.10+b=n^2 
<=>11(100a+b)=n^2 
=>n^2 chia hết cho 11 
=>n chia hết cho 11 
do n^2 có 4 chữ số nên 
32<n<100 
=>n=33,n=44,n=55,...n=99 
thử vào thì n=88 là thỏa mãn 
vậy số đó là 7744


Các câu hỏi tương tự
Ngô Hồng Thuận
Xem chi tiết
Trương Quân Bảo
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
InuYashA
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết