Giải
a) Các số n thuộc tập hợp Z để A là phân số là:
\(N=\left\{4;5;6;7;8;9;...\right\}\)
b) Vì số nguyên là số chia hết cho 1 và 9 nó , ngoài các không chia hết cho số nào khác. Nếu chia hết cho số nào khác thì số đó gọi là hợp số
Dựa vào số n đã liệt kê ở trên: N = {4 ; 5 ; 6 ; 7 ; 8 ; 9 ...}
Ta thử lần lượt các số:
\(\frac{4+1}{4-3}=\frac{5}{1}=5\)
Thử lần lượt tới số 9 thì ngưng sau đó áp dụng tính chất: Số nguyên là số chia hết cho 1 và 9 nó , ngoài các không chia hết cho số nào khác. Nếu chia hết cho số nào khác thì số đó gọi là hợp số. Đã nêu ở trên.
Vậy .............................
Bạn tth làm cũng không được đúng lắm :'(
\(a)\) Để \(A\) là phân số thì \(n\ne3\) ( vì nếu \(n=3\) thì \(3-3=0\) phân số có mẫu bằng 0 thì ko phải phân số )
\(b)\) Để \(A\) là số nguyên thì : \(\left(n+1\right)⋮\left(n-3\right)\)
Ta có :
\(n+1=n-3+4\) chia hết cho \(n-3\) \(\Rightarrow\) \(4⋮\left(n-3\right)\) \(\Rightarrow\) \(\left(n-3\right)\inƯ\left(4\right)\)
Mà \(Ư\left(4\right)=\left\{1;-1;2;-2;4;-4\right\}\)
Suy ra : ( lập bảng )
\(n-3\) | \(1\) | \(-1\) | \(2\) | \(-2\) | \(4\) | \(-4\) |
\(n\) | \(4\) | \(2\) | \(5\) | \(1\) | \(7\) | \(-1\) |
Vậy \(n\in\left\{4;2;5;1;7;-1\right\}\)