cho a, b>0 thỏa mãn a+b=1. CMR:\(8\left(a^4+b^4\right)+\frac{1}{ab}\ge5\)
Bài 1 :Cho a,b,c dương thỏa mãn a+b+c=2
CMR \(\frac{bc}{\sqrt{3a^2+4}}+\frac{ca}{\sqrt{3b^2+4}}+\frac{ab}{\sqrt{3c^2+4}}\ge\frac{\sqrt{3}}{3}\)
Bài 2:Cho a,b,c>0. CMR
\(\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge\frac{8}{9}\left(a+b+c\right)\left(ab+bc+ca\right)\)
Cho a;b;c > 0 thỏa mãn a + b + c = 1
CMR: \(\frac{ab}{a^2+b^2}+\frac{bc}{b^2+c^2}+\frac{ca}{c^2+a^2}+\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge\frac{15}{4}\)
Cho các số thực dương a,b,c thỏa mãn a + b + c = 3.CMR:
\(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{2\left(a^2+b^2+c^2\right)}{3}\ge5\)
Cho các số dương a, b thỏa mãn \(a+b+ab\le3\) CMR: \(\frac{1}{a+b}-\frac{1}{a+b-3}-\left(a-b\right)\ge\frac{1}{4}\left(ab-3\right)\)
Cho a,b,C>0 thỏa mãn an+bc+ca=1.Tìm GTNN M=\(\frac{a^8}{\left(a^4+b^4\right)\left(a^2+b^2\right)}+\frac{b^8}{\left(b^4+c^4\right)\left(b^2+c^2\right)}+\frac{c^8}{\left(c^4+a^4\right)\left(c^2+b^2\right)}\)
a;b;c>0 thỏa mãn abc=1. CMR:
\(\frac{a}{\left(a+1\right)\left(b+1\right)}+\frac{b}{\left(b+1\right)\left(c+1\right)}+\frac{c}{\left(a+1\right)\left(b+1\right)}\ge\frac{3}{4}\)
Cho các số thực dương a,b,c thỏa mãn ab + bc+ ca= abc. CMR
\(\left(a+b+c\right)\left(\frac{1}{a+bc}+\frac{1}{b+ca}+\frac{1}{c+ab}\right)\le\frac{9}{4}\)
Cho a;b;c>0 thỏa mãn abc=1. CMR:
\(\frac{a}{\left(ab+a+1\right)^2}+\frac{b}{\left(bc+b+1\right)^2}+\frac{c}{\left(ac+c+1\right)^2}\ge\frac{1}{a+b+c}\)