Ta có: a
/b+1 + (-a/b)
= a.b/b.(b+1) + (b+1).(-a)/b.(b+1)
= a.b/b.(b+1) + (-a.b - a)/b.(b+1)
= a.b+(-a.b-a)/b.(b+1)
= a.b-a.b-a/b2 + b
= -a/b2 + b ( đpcm)
Ta có: a
/b+1 + (-a/b)
= a.b/b.(b+1) + (b+1).(-a)/b.(b+1)
= a.b/b.(b+1) + (-a.b - a)/b.(b+1)
= a.b+(-a.b-a)/b.(b+1)
= a.b-a.b-a/b2 + b
= -a/b2 + b ( đpcm)
Cho a, b là các số nguyên và b > 0. Chứng minh : \(\frac{a}{b+1}+\frac{-a}{b}=\frac{-a}{b^2+b}\)
Cho các số nguyên a,b,c khác 0 thoả mãn tổng \(\frac{ab}{c}+\frac{bc}{a}+\frac{ca}{b}\)là các số nguyên. Chứng minh \(\frac{ab}{c},\frac{bc}{a},\frac{ca}{b}\)cũng là các số nguyên.
Cho các số nguyên dương a;b;c thỏa mãn \(\frac{1}{a}+\frac{1}{b}=\frac{1}{c}\)Chứng minh rằng:a,a+b không thể là số nguyên tố ....b,nếu c>1 thì a+c và b+c không đồng thơi là số nguyên tố
a) Tìm 3 số x, y, z biết rằng 2x-y=20 và \(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\).
b) Cho a,b,c là các số nguyên khác 0 và \(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}\). Chứng minh a=b=c.
cho 2 số nguyên a và b, trong đó a < b và b > 0. Chứng minh \(\frac{a}{b}\)< \(\frac{a+1}{b+1}\)
Cho a, b, m là các số nguyên với m > 0. CHứng minh rằng nếu a < b thì \(\frac{a}{b}< \frac{a+b}{2m}< \frac{b}{m}\)
* Cho 2 số nguyên a và b ( a< b, b> 0). Chứng minh rằng :
\(\frac{a}{b}\) < \(\frac{a+1}{b+1}\)
a) Cho a, b, c > 0. Chứng minh rằng M = \(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}\) không là số nguyên
b) Cho a, b, c thỏa mãn: a + b + c = 0. Chứng minh rằng ab + bc + ca nhỏ hơn hoặc bằng 0
Bài 1:1, Cho a,b,c là các số hữu tỉ khác 0 sao cho
\(\frac{a+b-c}{c}=\frac{a-b+c}{b}=\frac{-a+b+c}{a}\)
2,Chứng minh rằng : Với mọi số nguyên dương n thì \(3^{n+2}-2^{n+2}+3^n-2^n⋮10\)