Đáp án D
∫ c b f x d x = ∫ c a f x d x + ∫ a b f x d x = − 5 + 10 = 5
Đáp án D
∫ c b f x d x = ∫ c a f x d x + ∫ a b f x d x = − 5 + 10 = 5
Cho hàm số f ( x ) = a x + b c x + d với a,b,c,d là các số thực và c ≠ 0. Biết f(1)=1, f(2)=2 và f(f(x))=x với mọi x ≠ - d c . Tính l i m x → ∞ f ( x ) .
A. 3 2
B. 5 6
C. 2 3
D. 6 5
nếu 0<a<b<c<d<e<f
(a-b)(c-d)(e-f).x=(b-a)(d-c)(f-e) thì x=...
Cho hàm số f ( x ) = a x 3 + b x 2 + c x + d với a , b , c , d ∈ ℝ , a > 0 và d > 2018 a + b + c + d - 2018 < 0 . Số cực trị của hàm số y = f ( x ) - 2018 bằng
A. 3
B. 2
C. 1
D. 5
Cho hàm số f ( x ) = a x 3 + b x 2 + c x + d , ( a , b , c , d ∈ ℝ ) thỏa mãn a > 0 , d > 0 > 2018 , a + b + c + d - 2018 < 0 Tìm số điểm cực trị của hàm số y = f ( x ) - 2018
A. 2
B. 1
C. 3
D. 5
Cho hàm số f ( x ) = a x 3 + b x 2 + c x + d với a , b , c ∈ R ; a > 0 và d > 2018 a + b + c + d - 1018 < 0 .
Số cực trị của hàm số y=|f(x)-1018| bằng
A. 3
B. 2
C. 1
D. 5
Cho hàm số y = f x = a x 3 + b x 3 + c x + d a , b , c , d ∈ ℝ ; a ≠ 0 biết f'(-1)=3. Tính lim ∆ x → ∞ f 1 + ∆ x + f 1 ∆ x
A. 3
B. -3
C. 1
D. -1
Cho hàm số y = f ( x ) = a x 3 + b x 2 + c x + d (a;b;c;d ∈ R, a ≠ 0) có đồ thị (C). Biết rằng đồ thị (C) đi qua gốc tọa độ và có đồ thị hàm số y = f’(x) cho bởi hình vẽ sau đây.
Tính giá trị H = f(4) – f(2)
A. H = 51
B. H = 54
C. H = 58
D. H = 64
Cho hàm số y=f(x) liên tục trên đoạn [a;c] và a<b<c. Biết ∫ a b f ( x ) d x = - 10 , ∫ c a f ( x ) d x = - 5 . Tính ∫ c b f ( x ) d x
A. 15
B. -15
C. -5
D. 5
Cho hàm số f ( x ) = a x 3 + b x 2 + c x + d thỏa mãn a,b,c,dÎR; a > 0 và d > 2019 8 a + 4 b + 2 x + d - 2019 < 0 . Số cực trị của hàm số y = | f ( x ) - 2019 | bằng
A. 3
B. 2
C. 1
D. 5
Cho các số thực a, b, c, d thỏa mãn 0 < a < b < c < d và hàm số y = f(x). Biết hàm số y = f'(x) có đồ thị như hình vẽ. Gọi M và m lần lượt là giá trị lớn nhất và nhỏ nhất của hàm số y = f(x) trên [ 0 ; d ] . Khẳng định nào sau đây là khẳng định đúng?
A. M + m = f(b) + f(a)
B. M + m = f(d) + f(c)
C. M + m = f(0) + f(c)
D. M + m = f(0) + f(a)