Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Thị Hòa

Cho a ,b ,c là các số thực không âm thỏa manxcacs điều kiện : ab+bc+ca=3 và a>c .

Tìm giá trị nhỏ nhất của biểu thức : P= \(\frac{1}{\left(a+1\right)^2}+\frac{2}{\left(b+1\right)^2}+\frac{3}{\left(c+1\right)^2}\)

 

Lầy Văn Lội
15 tháng 6 2017 lúc 21:22

vì \(c\le a\)nên \(\frac{1}{\left(c+1\right)^2}\ge\frac{1}{\left(a+1\right)^2}\)

\(VT\ge\frac{2}{\left(a+1\right)^2}+\frac{2}{\left(b+1\right)^2}+\frac{2}{\left(c+1\right)^2}\)

Áp dụng BĐT AM-GM: \(\frac{1}{\left(a+1\right)^2}+\frac{1}{\left(b+1\right)^2}+\frac{1}{\left(c+1\right)^2}\ge\frac{1}{\left(a+1\right)\left(b+1\right)}+\frac{1}{\left(b+1\right)\left(c+1\right)}+\frac{1}{\left(c+1\right)\left(a+1\right)}\)

\(=\frac{a+b+c+3}{\left(a+1\right)\left(b+1\right)\left(c+1\right)}=\frac{a+b+c+3}{abc+a+b+c+4}\)(*)

Từ giả thiết: ab+bc+ca=3.Áp dụng BĐT AM-GM:\(3=ab+bc+ca\ge3\sqrt[3]{a^2b^2c^2}\Leftrightarrow abc\le1\)

và có BĐT \(\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)=9\)\(\Leftrightarrow a+b+c\ge3\)

\(\Rightarrow a+b+c\ge3\ge3abc\)

từ (*): \(\frac{a+b+c+3}{abc+a+b+c+4}\ge\frac{a+b+c+3}{\frac{a+b+c}{3}+a+b+c+4}=\frac{3\left(a+b+c+3\right)}{4\left(a+b+c\right)+12}=\frac{3}{4}\)

do đó \(VT\ge2.\frac{3}{4}=\frac{3}{2}\)

Dấu = xảy ra khi a=b=c=1

nguồn: Hữu Đạt 

Hoàng Phúc
15 tháng 6 2017 lúc 21:05

thử đổi biến từ (a,b,c)->(y/x,z/y,x/z) 

NGUYỄN TUỆ MINH
26 tháng 3 2020 lúc 18:01

htrsjnyted

Khách vãng lai đã xóa

Các câu hỏi tương tự
Lê Tài Bảo Châu
Xem chi tiết
hieu nguyen trong
Xem chi tiết
phan tuấn anh
Xem chi tiết
Nguyễn Mai
Xem chi tiết
công hạ vy
Xem chi tiết
Bao Nguyen Trong
Xem chi tiết
trần xuân quyến
Xem chi tiết
Nguyễn Văn Khoa
Xem chi tiết
Phùng Gia Bảo
Xem chi tiết