cho a,b,c là 3 số ≠ 0 thỏa mãn a+b+C=2016 và \(\dfrac{\text{1}}{\text{a}}\)+\(\dfrac{\text{1}}{\text{b}}\)+\(\dfrac{\text{1}}{\text{c}}\)=\(\dfrac{\text{1}}{\text{2016}}\)
CMr: trong ba số a,b,c tồn tại 2 số đối nhau
A, cho abc = 1 và a+b+c = 1/a +1/b +1/c. Chứng minh tồn tại một trong 3 số a,b,c bằng 1
B, chứng minh rằng nếu a + b + c = n và 1/a + 1/b + 1/c = 1/n thì tồn tại một trong ba số bằng n
C, chứng minh rằng nếu 3 số a,b,c khác 0 thì thỏa mãn đẳng thức
a2 -- b2 / ab + b2 -- c2 /bc + c2 -- a2/ca =0
thì tồn tại hai số bằng nhau
Cho 4 số a,b,c,d khác 0 thỏa mãn abcd=1 và a+b+c+d=1/a+1/b+1/c+/1d. chứng minh rằng tồn tại tích hai số trong 4 số bằng 1
cho 3 số thực a,b,c khác không thỏa mãn a+b+c khác 0 và \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\). Chứng minh rằng trong ba số a,b,c luôn có hai số đối nhau. Từ đó suy ra với mọi số nguyên n lẻ thì: \(\frac{1}{a^n}+\frac{1}{b^n}+\frac{1}{c^n}=\frac{1}{a^n+b^n+c^n}\) Mk đang cần gấp ai lm trước mk tích
cho ba số a,b,c thỏa mãn \(\frac{1}{a}\)-\(\frac{1}{b}\)-\(\frac{1}{c}\)=\(\frac{1}{a-b-c}\).CMR trong 3 số a,b,c luôn tồn tại 2 số bằng nhau hoặc đối nhau
cho ba só thỏa mãn a+b+c=2021 và 1/a+1/b+1/c=2021 cmr 1 trong 3 số a b c tồn tại ít nhất 1 số có giá trị 2021
Cho 4 số a,b,c,d khác 0 thỏa mãn abcd=1 và a+b+c+d= 1/a +1/b +1/c +1/d . CMR tồn tại 2 số trong 4 số đó bằng 1.
Cho bốn số a, b, c, d khác 0 thõa mãn: abcd = 1 và a + b + c + d = 1/a+1/b+1/c+1/d. Chứng minh trong 4 số đó tồn tại 2 số có tích bằng 1
Cho a,b,c đôi 1 khác nhau thỏa mãn : \(\frac{a}{b-c}+\frac{b}{c-a}+\frac{c}{a-b}=0\)0. Cmr trong ba số a,b,c phải có 1 số âm, 1 số dương
cho a,b,c>0 thỏa mãn abc=1.chứng minh \(\frac{1}{a^{2016}+b^{2016}+1}+\frac{1}{b^{2016}+c^{2016}+1}+\frac{1}{c^{2016}+a^{2016}+1}\le1\)