Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Phạm Thanh Trà

Cho a, b, c dương và \(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}=\frac{3}{2}\)  Tìm giá trị lớn nhất của biểu thức

\(P=\frac{1}{\sqrt{a^2-ab+b^2}}+\frac{1}{\sqrt{b^2-bc+c^2}}+\frac{1}{\sqrt{c^2-ca+a^2}}\)

 Mashiro Shiina
13 tháng 7 2019 lúc 14:38

Cần chứng minh: \(\sqrt{a^2-ab+b^2}\ge\frac{1}{2}\left(a+b\right)\)

Thật vậy: \(\sqrt{a^2-ab+b^2}\ge\frac{1}{2}\left(a+b\right)^2\Leftrightarrow4\left(a^2-ab+b^2\right)\ge\left(a+b\right)^2\)

\(\Leftrightarrow4a^2-4ab+4b^2-a^2-b^2-2ab\ge0\Leftrightarrow3\left(a^2+b^2-2ab\right)\ge0\Leftrightarrow3\left(a-b\right)^2\ge0\)(đúng)

Áp dụng:\(P=\frac{1}{\sqrt{a^2-ab+b^2}}+\frac{1}{\sqrt{b^2-bc+c^2}}+\frac{1}{\sqrt{c^2-ac+a^2}}\)

\(\le\frac{1}{\frac{1}{2}\left(a+b\right)}+\frac{1}{\frac{1}{2}\left(b+c\right)}+\frac{1}{\frac{1}{2}\left(c+a\right)}=2\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{a+c}\right)=3\)

Dấu "=" xảy ra khi: \(a=b=c=1\)


Các câu hỏi tương tự
Tung Nguyễn
Xem chi tiết
ank viet
Xem chi tiết
minh minh
Xem chi tiết
Nguyễn Yến Vy
Xem chi tiết
phan thị minh anh
Xem chi tiết
wary reus
Xem chi tiết
Nguyễn Trung Hiếu
Xem chi tiết
wary reus
Xem chi tiết
Lee Je Yoon
Xem chi tiết