Cho a,b,c>1 Biết rằng biểu thức P = log a b c + log b a c + 4 log c a b đạt giá trị nhỏ nhất bằng m khi log b c = n . Tính giá trị m + n .
A. 12
B. 25/2
C. 14
D. 10
Cho a,b,c là các số thực dương thỏa mãn a log 5 2 = 4 , b log 4 6 = 1 , log , c log 7 3 = 49 Tính giá trị của biểu thức T = a log 2 2 5 + b log 4 2 6 + 3 c log 7 2 3
A. T=126
B. T = 5 + 2 3
C. T=88
D. T = 3 - 2 3
Trong không gian Oxyz cho ba điểm A(1;1;1), B(-3;11;-1), C(4;m-1;0), D(1;m+2;0). Điểm M(a;b;c) thuộc mặt phẳng ( α ) : 2 x - y + 2 z + 7 = 0 sao cho biểu thức P = 3 M A ¯ + 5 M B ¯ - 7 M C ¯ đạt giá trị nhỏ nhất. Tính a+b+c
A. 4
C. -5
C. 13
D. 7
Cho x ϵ (0;π/2). Biết log(sinx)+log(cosx)=-1 và log(sinx+cosx)=1/2(logn-1). Giá trị của n là
A. 11.
B. 12.
C. 10.
D. 15.
Xét hàm số f ( x ) = a ln x 2 + x 2 + 1 + b sin 4 x + c . 10 x Với a, b, c là những hằng số. Biết f ( log log e ) + f ( log ( ln 10 ) ) = 4 Giá trị của c nằm trong khoảng nào?
A . 1 ; 3 2
B . 0 ; 1
C . 3 2 ; 2
D . ( 2 ; 3 )
Cho hàm số y = ln 2 x - a - 2 m ln 2 x - a + 2 (m là tham số thực), trong đó x, a là các số thực thỏa mãn đẳng thức
log 2 x 2 + a 2 + log 2 x 2 + a 2 + log 2 x 2 + a 2 + . . . + log . . . 2 ⏝ n c ă n x 2 + a 2 - 2 n + 1 - 1 log 2 x a + 1 = 0 (với n là số nguyên dương). Gọi S là tập hợp các giá trị của m thỏa mãn M a x 1 ; e 2 y = 1 . Số phần tử của S là:/
A. 0
B. 1
C. 2
D. Vô số
Cho hàm số y = f x liên tục và không âm trên R thỏa mãn f x . f ' x = 2 x f 2 x + 1 và f 0 = 0 . Gọi M,m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = f x trên đoạn 1 ; 3 . Biết rằng giá trị của biểu thức P = 2 M − m có dạng a 11 − b 3 + c , a , b , c ∈ ℤ . Tính a + b + c
A. a + b + c = 4
B. a + b + c = 7
C. a + b + c = 6
D. a + b + c = 5
Biết rằng tập nghiệm S của bất phương trình log - x 2 + 100 x - 2400 < 2 có dạng S = a ; b \ x ∘ . Giá trị của a + b - x ∘ bằng:
A. 150.
B. 100.
C. 30.
D. 50.
Biết rằng tập nghiệm S của bất phương trình log - x 2 + 100 x - 2400 < 2 có dạng S = (a;b)\{x0}. Giá trị của a + b – x0 bằng:
A. 100
B. 30
C. 150
D. 50