Áp dụng Bđt \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\)ta có:
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}=9\)(Đpcm)
Áp dụng Bđt \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\)ta có:
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}=9\)(Đpcm)
cho a,b,c > 0. CM: (a+b+c)(1/a+1/b+1/c)>=9
Cho a,b,c>0. a+b+c=1 .Cm a/1+bc +b/1+bc +c/1+ab>=9/10( không dùng cosi)
cho các số thực a,b,c thỏa: a+1/b=b+1/c=c+1/a
a) cho a=1, tim b,c
b)Cm: neu a,b,c đôi một khác nhau thì a2b2c2=1
c) Cm; nếu a,b,c>0 thì a=b=c
1.
Cho -1<=a;b;c<=2.a+b+c=0.CM:
a,a^2+b^2+c^2<=6
b,2abc<=a^2+b^2+c^2<=2abc+2
c,a^2+b^2+c^2<=8-abc
2,
Cho 0<=a;b;c<=2.a+b+c=3
CM:3<=a^3+b^3+c^3-3(a-1)(b-1)(c-1)<=9
cho a b c >0 Cm \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\)
CM nếu a,b,c > -1,a+b+c=1 thì a/(1+a2)+b/(1+b2) + c/(1+c2) < 9/10
1
cho a,b,c>0: abc=1
cm:\(\frac{b^2}{a}+\frac{c^2}{b}+\frac{a^2}{c}+\frac{9}{2\left(ab+bc+ca\right)}\ge\frac{9}{2}\)
2)
cho a,b,c >0 thỏa a+b+c=3. cm:
\(\frac{3+a^2}{b+c}+\frac{3+b^2}{c+a}+\frac{3+c^2}{a+b}\ge6\)
làm đc bài nào thì trình bàybài giải vào giùm mik lun nhé!
thanks
1. Cho a,b >0; a+b ≤ 1
Tìm min \(N=ab+\dfrac{1}{ab}\)
2. Cho a,b,c >0 t/m: a+b+c ≥ 6
Tìm min \(P=5a+6b+7c+\dfrac{1}{a}+\dfrac{8}{b}+\dfrac{27}{c}\)
3. Cho a,b,c ∈ \(\left[-1;2\right]\) và \(a^2+b^2+c^2=6\)
\(CM:\) a+b+c ≥ 0
Cho a,b,c>0 thỏa mãn a+b+c=3 Cm\(\dfrac{1}{a^2+a+1}+\dfrac{1}{b^2+b+1}+\dfrac{1}{c^2+c+1}\ge1\)
\(\dfrac{1}{a^2+a+1}+\dfrac{1}{b^2+b+1}+\dfrac{1}{c^2+c+1}\ge1\)