\(A=3+3^2+3^3+...+3^{100}\)
\(3A=3^2+3^3+...+3^{100}+3^{101}\)
\(3A-A=3^2+3^3+...+3^{100}+3^{101}-\left(3+3^2+3^3+...+3^{100}\right)\)
\(2A=3^{101}-3\)
\(2A+3=3n\)
\(\Rightarrow3^{101}-3+3=3n\)
\(\Rightarrow3^{101}=3n\)
\(\Rightarrow n=3^{100}\)
Ta có A= 3+3^2+3^3+...+3^100
3A= 3^2+3^3+3^4+...+3^101
3A-A=(3^2+3^3+3^4+...+3^101)-(3+3^2+3^3+...+3^100)
2A= 3^101 - 3
Ta lại có 2A+3=3^101-3+3
= 3^101
=> 3n=3^101
=> n= 3^101:3
=> n= 3^100
Vậy n= 3^100