a: G thuộc Oy nên G(0;y)
\(GA=\sqrt{\left(-3-0\right)^2+\left(0-y\right)^2}=\sqrt{y^2+9}\)
\(GC=\sqrt{\left(4-0\right)^2+\left(1-y\right)^2}=\sqrt{y^2-2y+1+16}\)
Để GA=GC thì y^2-2y+17=y^2+9
=>-2y=-8
=>y=4
b: \(HA=\sqrt{\left(-3-x\right)^2+\left(0-y\right)^2}=\sqrt{\left(x+3\right)^2+y^2}\)
\(HC=\sqrt{\left(4-x\right)^2+\left(1-y\right)^2}\)
HA=HC
=>(x+3)^2+y^2=(x-4)^2+(y-1)^2
=>x^2+y^2+6x+9=x^2-8x+16+y^2-2y+1
=>6x+9=-8x+16-2y+1
=>6x+9=-8x-2y+17
=>14x+2y-8=0
=>7x+y-4=0
Đúng 0
Bình luận (0)