Cho A(2;1;-1), B(3,0,1), C(2;-1;3) và D nằm trên Oy và thể tích tứ diện ABCD bằng 3. Tọa độ của D là
A. D(0;5;0)
B. D(0;3;0)
C. C(0;-4;0) hoặc D(0;5;0)
D. (0;-2;0)
Cho A 1 ; 1 ; − 1 , B 3 ; 1 ; 2 , C 0 ; 1 ; − 1 và điểm D nằm trên trục Oy và thể tích tứ diện ABCD bằng 1. Tọa độ của D là
A. D 0 ; 2 ; 0
B. D 0 ; - 2 ; 0
C. D 0 ; - 3 ; 0
D. D 0 ; − 1 ; 0 D 0 ; 3 ; 0
Cho A 1 ; 1 ; - 1 , B 3 ; 1 ; 2 , C 0 ; 1 ; - 1 và điểm D nằm trên trục Oy và thể tích tứ diện ABCD bằng 1. Tọa độ của D là
A. D(0;2;0)
B. D(0;-2;0)
C. D(0;-1;0) hoặc D(0;3;0)
D. D(0;-3;0)
Trong không gian Oxyz cho tứ diện ABCD có thể tích V = 5 , các đỉnh A = 2 ; 1 ; − 1 , B = 3 ; 0 ; 1 , C = 2 ; − 1 ; 3 , đỉnh thứ tư D nằm trên trục Oy và có tung độ dương. Tìm tọa độ của D.
A. D = 0 ; 8 ; 0
B. D = 0 ; 7 ; 0
C. D = 0 ; 7 4 ; 0
D. D = 0 ; 17 4 ; 0
Trong không gian Oxyz, cho các điểm A(2 ;1 ;0),B(0 ;4 ;0),C(0,2,-1) Biết đường thẳng ∆ vuông góc với mặt phẳng (ABC) và cắt đường thẳng d : x - 1 2 = y + 1 1 = z - 2 3 tại điểm D(a ;b ;c) thỏa mãn a > 0 và tứ diện ABCD có thể tích bằng 17/6. Tổng a+b+c bằng
A. 5
B. 4
C. 7
D. 6
Trong không gian với hệ trục tọa độ Oxyz, cho ba điểm A(0; 0; 2), B(3; 0; 5), C(1; 1; 0). Tọa độ của điểm D sao cho ABCD là hình bình hành là
A. D(4; 1; 3)
B. D(-4; -1; -3)
C. D(2; 1; -3)
D. D(-2; 1; -3)
Trong không gian Oxyz, cho hai mặt cầu S 1 : x 2 + y 2 + z 2 - 2 x + 4 y - 2 z + 2 = 0 và S 2 : x 2 + y 2 + z 2 - 2 x + 4 y - 2 z - 4 = 0 . Xét tứ diện ABCD có hai đỉnh A,B nằm trên (S1); hai đỉnh C,D nằm trên (S2 ). Thể tích khối tứ diện ABCD có giá trị lớn nhất bằng
A. 3 2
B. 2 3
C. 6 3
D. 6 2
Trong không gian với hệ trục tọa độ Oxyz, cho các điểm A ( a ; 0 ; 0 ) , B ( 0 ; b ; 0 ) , C ( 0 ; 0 ; c ) , trong đó a > 0 , b > 0 , c > 0 và 3 a + 1 b + 3 c = 5 . Biết mặt phẳng (ABC) tiếp xúc với mặt cầu (S) có phương trình là ( x - 3 ) 2 + ( y - 1 ) 2 + ( z - 3 ) 2 = 304 25 , khi đó thể tích của khối tứ diện OABC nằm trong khoảng nào?
A . ( 0 ; 1 2 ) .
B. (0;1).
C. (1;3).
D. (4;5).
Trong không gian với hệ toạ độ Oxyz, cho tứ diện ABCD với A(3;5;-1),B(0;-1;8),C(-1;-7;3),D(1;0;2) và điểm M(1;1;5). Mặt phẳng (P):ax+by+cz-14=0 qua hai điểm D,M cắt cạnh AC và (P) chia khối tứ diện ABCD thành hai phần có thể tích bằng nhau. Giá trị của biểu thức a+b+c bằng
A. 10
B. 16
C. 8
D. -36