Bài 3: Rút gọn phân thức

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
thaonguyen

Cho A= 1/(x-2) + (x2-x-2)/(x2-7x+10) - (2x-4)/(x-5)

a) Rút gọn A

b) Tìm x nguyên để A nguyên

Nguyễn Lê Phước Thịnh
3 tháng 3 2020 lúc 21:51

a) Ta có: \(A=\frac{1}{x-2}+\frac{x^2-x-2}{x^2-7x+10}-\frac{2x-4}{x-5}\)

\(=\frac{1}{x-2}+\frac{x^2-2x+x-2}{x^2-5x-2x+10}-\frac{2x-4}{x-5}\)

\(=\frac{1}{x-2}+\frac{x\left(x-2\right)+\left(x-2\right)}{x\left(x-5\right)-2\left(x-5\right)}-\frac{2x-4}{x-5}\)

\(=\frac{1}{x-2}+\frac{\left(x-2\right)\left(x+1\right)}{\left(x-5\right)\left(x-2\right)}-\frac{2x-4}{x-5}\)

\(=\frac{1}{x-2}+\frac{x+1}{x-5}-\frac{2x-4}{x-5}\)

\(=\frac{1}{x-2}+\frac{x+1-2x+4}{x-5}\)

\(\frac{1}{x-2}+\frac{5-x}{x-5}=\frac{1}{x-2}-\frac{x-5}{x-5}=\frac{1}{x-2}-1=\frac{1}{x-2}-\frac{x-2}{x-2}=\frac{1-x+2}{x-2}=\frac{-x+3}{x-2}=\frac{3-x}{x-2}\)

b) Để A có giá trị nguyên thì 3-x⋮x-2

⇔-x+2+1⋮x-2

⇔-(x-2)+1⋮x-2

⇔1⋮x-2

hay x-2∈Ư(1)

⇔x-2∈{1;-1}

hay x∈{3;1}

Vậy: x∈{3;1}

Khách vãng lai đã xóa

Các câu hỏi tương tự
Maianh
Xem chi tiết
Ngô Vịnh
Xem chi tiết
KYAN Gaming
Xem chi tiết
Trà My Phạm
Xem chi tiết
Lê Mai Tuyết Hoa
Xem chi tiết
nguyen thi hoa
Xem chi tiết
huyền trần
Xem chi tiết
Phạm Thị Hậu
Xem chi tiết
Jennifer Ruby Jane
Xem chi tiết